ISSN 2523-4455. MicrosystElectronAcoust, 2020, vol. 25, no. 1

27

UDC 621.3(045)

Optimal Low Density Parity Check Matrices
to Correct Quantum Key Errors for QKD

B. O. Bilash, ORCID 0000-0002-1341-1920

National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

Kyiv, Ukraine

Abstract—In this paper, the parity-check matrices that can be used in low density parity check (LDPC) based error
correction method for quantum key distribution are analyzed. The quantum key distribution system has inevitable errors
in sifted key that must be corrected by an error correction algorithm to create a secure key. In this analysis, 1000-bit sifted
keys are divided into 50 parts. The algorithm creates 50 syndromes corresponding to each part by multiplying 10 x 20 bit
parity-check matrices. The algorithm sends the generated syndrome to the other side, which also divides the sifted key into
50 parts, creates a syndrome from each part, and compares with the received syndrome. If the syndromes are different,
these sifted key parts are discarded. However, there may be situations where different parts may have the same syn-
dromes. Therefore, it is necessary to find such an optimal matrix that removes the probability of getting the same syn-

dromes at different parts of the sifted key.

Key words — QKD; LDPC; error correction; parity-check matrix; post-processing

1. INTRODUCTION

A. Quantum key distribution.

Quantum key distribution (QKD) is a system that can
securely share an identical key between two distant par-
ties, Alice and Bob [1]. Unlike modern classical crypto-
graphic protocols, such as RSA (Rivest-Shamir—Adle-
man), which is based on the practical difficulty of
the factorization of the product of two large prime num-
bers [2], QKD protocol is based on the quantum
mechanics.

Although the first BB84 protocol [3] for QKD was
proposed in 1984, it is being actively researched. There
are some subjects for research works on the QKD such
as chip-scale system [4], long-distance communication
[5], high secure key rate QKD [6]-[8], and efficient
post-processing [9].

The main task of the post-processing is error correc-
tion to share an identical secure key with Alice and Bob.
Therefore, it is necessary to explain where the errors
occur. The unreliable quantum channel is named because
photons may cause noise to change the photon’s charac-
teristics. There may also be errors when accepting pho-
tons by Bob and misreading the state of the photon.
The single-photon detecter, which is an extremely sensi-
tive component for detecting a single photon, has
inevitably has some noises, such as Dark count, After
pulse, also there is Cross talk from the other channel
[10]. Theoretically, the quantum key is not safe when
the quantum bit error rate (QBER) is more than 11%.
Usually, in commercial QKD system, the QBER of
the system is under control below 5% which must be
corrected. That is why they use error correction at
the post-processing stage. It should also be noted that at
the post-processing stage and at subsequent stages,
the exchange of information between Alice and Bob

takes place via a classical channel, which with a high
degree of probability can be considered as almost per-
fectly reliability. Therefore, the task is to correct
the errors that occurred during the phase of the photon
exchange.

B. Analysis of existing error correction methods.

There are some error correction methods to correct
quantum bit error, such as Cascade, Winnow, Low-Den-
sity Parity-Check codes (LDPC). Those ideas are
adopted from the classical error correction methods.

In the Cascade [11] protocol, in each pass, Alice and
Bob agree on a random permutation that applies to their
bits.

Winnow [12], like Cascade, breaks binary strings to
match them into blocks, but instead of bug fixing using
iterative binary bug fixing is based on Hamming code.

But these protocols work poorly over long distances,
also with long-distance messages. It is necessary to use
a protocol that would contain the check bits together
with the main message at one time during transportation.
On the contrary, the LDPC protocol has an advantage in
the case of long distance communication [13]. Nowa-
days, the computing power and electronics have
improved, so the LDPC protocol has a lot of attention
and developments on the LDPC code [14], [15].

Figure 1 is the overall procedure of the QKD. At
the error correction step, Alice and Bob have sifted keys,
but they are slightly different from each other due to
the background noises of the QKD system. The purpose
of this phase is to reconcile the sifted keys so that they
are the same and then pass them on to the next stage of
privacy amplification. The main problem at this stage is
that when transferring the sifted keys between Alice and
Bob, it is necessary to protect them so that Eve could not

®
@J Copyright (c) 2020 binam b. O.

€GT10T W SSHH-€TST/SESOT 01 -10d

https://orcid.org/0000-0002-1341-1920
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.20535/2523-4455.mea.201253

en
%)
N
—
N

5}
%)
n
hA
Y

0535/2523

a)

N
(e
—

—

a

28

EnexTpoHHi cuCTeMH Ta CUTHAIU

get the sifted key. To avoid this, you can use hashing
protocols to protect the information being transmitted.
But this approach is not rational because of increasing
computing resources and the processing time for
the hash function. That is why there is another approach
for correcting errors and protecting information from
Eve.

Consider the known methods for error correction. In
[16], researchers propose a full-cycle creating QKD sys-
tem. According to their error-correction step, one side of
the fresh key encodes a syndrome and sends it to
the other side. In this case syndrome is a hash-function.
We cannot convert syndrome to original message. And if
Eve has syndrome, she cannot do nothing with this syn-
drome. Using it, we are sure that when error correction
step, Eve will not know the information about the origi-
nal bits between Alice and Bob. The other side decodes
the syndrome and compares the results with its own. If
the results do not match, this key is discarded and a new
one is sent. We assume under certain conditions even
fresh keys are different, they can have the same syn-
dromes. In this work, we will find optimal matrices, that
let to us to do not have cases, where we will have
the same syndromes.

2. COMMON SYNDROMES.

In the classical LDPC applying, first, the parity-
check matrix H is generated, in which the “1” are uni-
formly and very rarely located, and all other positions
are “0”. Such a matrix is not systematic. By using
Gaussian elimination it is necessary to transform it into
a systematic form [-P7| L,], where I,+is a prime identity
matrix, P" — binary matrix (in binary codes -P = P).
From matrix H we creating generate matrix G = [/; | P].
Usually, one side, Alice, has an output message m of
size k that is converted into a codeword ¢ of length n by
a matrix G. Therefore, the matrix G has dimensions
k x n. The */, ratio is called the relative code transmis-
sion rate (or just code rate) [17]. Typically, this rate is
1/2, 2/3, 3/4 and so on. The codeword is sent to the other
side, Bob, through the noise channel. Bob accepts a vec-
tor r, which may differ from the codeword by some
number of bits. In a simple example, the resulting vector
differs by one bit. Bob, using the matrix multiplication
of matrix H and the resulting vector r, obtains a vector
s called a syndrome: s = H*r. If, as a result, the syn-
drome has all zeros, then the resulting vector r has no
errors and is equal to the codeword. Bob then decodes
the vector into a message m that is equal to Alice's mes-
sage. If the vector r, in the simplest case, has one error,
then the syndrome s will coincide with the column of
the matrix H, whose number will be the number of
the error bit in the vector r.

In QKD systems, LDPC codes cannot be used as
they would in classic applications. You cannot just send
a sifted key because eavesdropper (Eve) can find out
about the sifted key and then there is no point in creating
a secure key. Therefore, it is necessary to come up with
such a method of correcting the errors in Alice and Bob's
sifted keys so that Eve cannot find out about them. In
[16] it is suggested to create and exchange syndromes
between the sides. This idea needs to be explained in
more detail.

3 Step 1: 4 A
—_— Bob
AlE2 Quantum Transmission
Randoml, - .
gener:{‘e g”s’\?»g\e— Sending polanzeg photons Randomly select a
photon state by a A . * A basis for measuring
ot HAG- @& @ @~
I I
5 Step 2: Sifting /B
Discard unmatched Share chosen bases
bases and share Exchanging bits without resutts of
result to Bob measuring to Alice
X Step 3: Error Correction Y
Correct error bits by Exchanging bits Correct error bits by
Rt Rt
S Step 4: S
Privacy Amplification
Universal hashing Universal hashing
Secret Key Secret Key
Ciphertext
Encryption > Decryption
Plaintext Plaintext

Figure 1. Overall procedure for the QKD

In Figure 1, in the first step, Alice encodes her infor-
mation in the polarization of single-photon states and
sends it to Bob. Bob detects single-photon states with
the selected base and records the measurement result
into classical bits. After that, Bob sends the chosen bases
to Alice, who in turn discards the classical bits whose
bases did not match with the chosen Bob [3]. As a result,
at the beginning of step 3, Alice and Bob have sifted
keys of the same length, but which differ by a certain
percentage of bits. This is called the quantum bit error
rate (QBER).

Drawing on the analogy of the classic error correc-
tion method, QBER is additive white Gaussian noise
(AWGN).

In the case of QKD, the two sides already have sifted
keys, X and Y, which are not the same and need to be
fixed. Alice cannot send her sifted key to Bob, because
Eve immediately finds out about it. Therefore, it is sug-
gested to exchange syndromes. A syndrome is created by
multiplying the sifted key by matrix H: s = HX".
The proposed method does not require the creation of
a matrix G. Unlike the classic case, the syndrome is
unknown in advance (but can also be all zeros). It is not
necessary to correct the sifted key X with the resulting
s syndrome. This syndrome is sent to Bob. Eve, having
received the syndrome has nothing to do with it. Bob
creates his syndrome § by multiplying his sifted key by
the matrix H: § = HY". The main idea is that if parts of
the sifted keys are the same - the created syndromes will
also be the same. If parts of the sifted keys are different,
the syndromes should be different and these parts of
sifted keys will be discarded.

In our research, it was decided to use a sifted key
with a size of 1000 bits. Using LDPC matrix with
1000 + “parity bits” is not rational because it takes a lot
of hardware resources. Instead, we propose to divide
message for small parts and to create syndromes from
each part independently for other parts. We used
the standard matrix size at which the coding rate in
the classical method is 1/2 and is one of common. To our

O]
@A Copyright (¢) 2020 binam b. O.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.20535/2523-4455.mea.201253

ISSN 2523-4455. MicrosystElectronAcoust, 2020, vol. 25, no. 1

29

research we decided to investigate not big matrices.
There are proposed to use 5 x 10, 10 x 20, 20 x 40 size
matrices. In these cases, we divide our 1000-bit message
for 100, 50, 25 parts with 10, 20, 40 bits in each part
respectively.

We chose 10 % 20 matrix as optimal. The reasons for
this choice will be explained later. In this case,
the length of a part of the sifted key is 20 bits, and
the created syndrome is 10 bits. Then the possible com-
binations of the sifted key may be 2%, and the possible
combinations of syndrome 2'. In this case, one syn-
drome will respond to 1024 different messages. There-
fore, when the messages are different, there may be situ-
ations where the syndromes will be the same. Then
the error correction of the part will be failed. The solu-
tion may be to increase the length of the syndrome or to
find a special H matrix, which, under certain conditions,
will not cause common syndromes for different mes-
sages.

3. SHARED MESSAGES AND THEIR DEPENDENCY
ON QOBER.

To analyze the error correction algorithm, proposed
in [16], we arbitrarily selected messages of 1000 bits
length. After that, we randomly changed the message
bits depending on QBER. The simulation program was
written in C language. The algorithm for adding error
bits, for example, for QBER = 5% is as follows: 1) we
generate a random number from 0 to 999 for each bit of
the sifted key (1000 bits total), 2) if this number is less
than 50 (in our case it is equivalent to 5% for QBER) -
change this bit; if more - we save this bit. This does not
mean that it will change exactly 50 bits in the message,
but in Figure 2 it will be similar to a Poisson distribution
with a mathematical expectation of 50 bits. For each
QBER from 0.1% to 25% in 0.1% increments (1 to
250 bits, 1-bit increments), we repeated this procedure
100 times. Figure 2 lets us know, that we use Poison dis-
tribution to create errors in messages.

As a result, we have two messages: the original mes-
sage, which is the sifted key of Alice, X, and changed to
a certain number of bits equal to QBER, the message
that is the sifted key of Bob, Y.

Next, we divide each sifted key from Alice and Bob
into 50 parts, 20 bits each, and compare these parts.
Then count the number of parts that are the same. Ide-
ally, there will be 50 (all parts of one sifted key are equal
to all parts of another sifted key).

Quantity of messages
with certain quantity of different bits

0 50 100 150 200 250 300 350 400 450 500
Quantity of different bits

Figure 2. Changed bit distribution for 5% QBER

P
= o S

=

3
wm =

Quantity of same messages
. .

0
020 40 60 B0 100 120 140 160
QBER (%4}

Figure 3. Identical parts of the message depending on QBER

180 200 220 240

Figure 3 shows the average number of messages that
will be the same for different QBER. According to
the graph, one can see that at a very small value of
QBER most parts of the sifted key are the same. Every
time, Alice and Bob exchange 50 parts of original mes-
sage. If messagesare absolutely same, all 50 parts are
also same. In this case, 0 messages will be discarded.
But in real situation, if messages are different, some
parts of messages and their syndromes are also different.
For example, at QBER = 5%, on average only 16 parts
from 50 are same between Alice and Bob. Other 34 parts
have at least 1 different bits, and they will be discarded.

Consider other examples, 5 x 10, 20 x 40 size matri-
ces. We added to messages errors and divided for 100
and 24 parts respectively. Results on Figure 4.

On Figure 4, first graph shows results for 10 x 20
matrix, same with Figure 3, but it is not on average. Sec-
ond graph shows results for 20 x 40 matrix. Third graph
shows results for 10 x 20 matrix.

Obviously, the best solution is to divide the message
into 100 parts. Then there is one error in the message
will be divided between two messages, one of which
will be rejected and the other will be saved. The number
of possible message combinations will be 2'° = 1024,
and the number of possible syndromes will be 2° = 32,
And each syndrome will correspond to 32 possible mes-
sages.

Then Eva will be able to more easily determine
the possible combinations of codewords, which is dan-
gerous, by the method of selection. On the other hand, if
the length of the message is 40 bits, there will be 2%
possible combinations and 2% possible syndromes. One
syndrome will have more than one million possible mes-
sages, which will be a problem for Eva to find a possible
codeword. However, with a small QBER, if there is only
one error in the message - the whole message is rejected,
it is not rational. From this point of view, the size of
the messages chosen from the very beginning is the most
successful compromise between the difficulty of Eva
finding the original message and the number of rejected
messages in the presence of an error. And a matrix of
size 10 x 20 is the most optimal.

®
@J Copyright (c) 2020 binam b. O.

€GT10T W SSHH-€TST/SESOT 01 -10d

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.20535/2523-4455.mea.201253

DOI: 10.20535/2523-4455.mea.201253

30

EnexTpoHHi cuCTeMH Ta CUTHAIU

quantity of same messages

QBER (%)

Figure 4. Identical parts of the message depending on
QBER for 50, 25, 100 parts of message.

4. INVESTIGATION OF CONFLICTING MESSAGES.

As stated above, even if parts of sifted keys are dif-
ferent, there may be situations where syndromes are
the same.

At QBER = 5%, we expect our sifted keys to be
50 bits apart. Of course, there may be a situation where
these 50 bits are stocked at three parts, and then each
part will contain at least 10 changed bits. But a more
realistic situation is when these bits are distributed
evenly between all parts. Then one bit will be changed
in each part.

We created a new syndrome from the part of
the sifted key and the matrix H, which is the same for all
parts of the message. The matrix was created using
the method suggested by David Mackay and Radford
Neal in [14], [15]. Radford Neal has created open-source
software [18]. We have integrated Neal’s code to gener-
ate the H matrix into our code.

Since the created H matrix has dimensions of
10 x 20 bits, it is enough for checking all combinations
of 20-bit messages. Therefore, the need to investigate all
combinations of errors of the original key of 1000 bits in
length makes no sense. It is enough to investigate all
the combinations of a part of the message that has only
20 bits.

Since the H matrix must be sparse, the number of "1"
in the matrix should at least not exceed the number of
"0". Therefore, we have created 10 matrices using Neal’s
software, 5 matrices for “evencol” and 5 matrices for
“evenboth” methods. In each matrix, the number of "1"
in each column is from 1 to 5. The seed value of the ran-
dom function is 1.

We used a message in which all 20 bits are zeros and
changed the bits in every possible combination. First, we
changed one bit in each possible position, then two,
three, etc., to consider all possible combinations of
the modified message. They then created the syndromes

from these messages and compared them with the origi-
nal message’s syndrome.

We calculated the number of common syndromes
varying a certain number of bits. The results showed that
with the “evenboth” method and number of 1 in each
column is 4, which is optimal H matrix for applying the
QKD system because QKD operates properly QBER is
under 5%. It lets to us to use optimal matrix that
removes the probability of getting the same syndromes
at different parts of the sifted key. In figure 5 we can see,
that if we use this optimal matrix, we will not have same
syndromes of messages are different when QBER is
under 16%. In graph, if quantity is 50, all syndromes are
different if messages are different. Only in two cases we
have same syndromes if messages are different.
The X-axis and Y-axis are changed bits from 0 to 20 and
the number of common syndromes from the original and
changed message, respectively.

According to the results, when the number of
changed bits is less than 4, we do not have common syn-
dromes in different messages. As mentioned above,
errors are distributed in the sifted keys evenly, and there-
fore at QBER = 5%, from 1000 bits in the middle will
change 50 bits. We have 50 parts of message, so in every
part usually will change 1 bit. Our matrix will not have
syndromes when change under 3 bits (15% from 20-bit
parts of message). It is very rarely probability, that will
change 4 or more bits, if QBER is under 5%. Result of
same syndromes distribution to our matrix if on
Figure 6.

200

[
=

100

LAy
=

Quantity of same syndromes

0 5 10 15 20
Quantity of different bits
Figure 5. Distribution of the number of same syndromes versus the
number of changed bits

0 5 10 15 20 25
QBER (%)

Figure 6. Error correction step

O]
@A Copyright (¢) 2020 binam b. O.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.20535/2523-4455.mea.201253

ISSN 2523-4455. MicrosystElectronAcoust, 2020, vol. 25, no. 1 31

10

quantity of common messages
G

0 .
0 5 10 15 20
quantity of same syndromes

Figure 7. Number of common syndromes at 4 changed bits

- N

Divide X sifted key
on parts, 20 bits in on parts, 20 bits in
each part each part

1 t

Creating syndrome
from part

Step 3: Error Correction -)

Divide Y sifted key

Creating syndrome
from part
and receiving
Alice's syndrome

' 1

Comparing
syndromes. If
different — delete
current part. Sending
result of comparing
to Alice

Sending syndrome

and sending
syndrome to Bob

Receiving result of
Bob's comparing. If
syndromes are
different - delete
current part.

\ 4 h
s s

Sending result of comparing

Figure 8. Error correction step

5. SEED RESEARCH FOR NEAL’S MATRICES.

These results, as mentioned above, were obtained
when the seed value for the generation of the matrix was
1. We conducted studies and created 1000 different
matrices where the seed value was from 1 to 1000. Of
these, 144 matrices did not have common syndromes, if
they were only changed up to three bits in each message.
So, theoretically, we can use those matrices to create
syndromes to apply the QKD system.

Among these syndromes, when changing 4 bits into
messages, there may be a common number of syn-
dromes. For seed = 1, the number of common syn-
dromes is 4. The total result for the 144 matrices found
is in Figure 7.As you can see from the graph, the total
number of common syndromes is 4-6, but there are
matrices when the number of common syndromes is
1 which is enough for QKD condition.

6. RESULTS.

The complete error correction process based on [16]
is depicted in Figure 8.

CONCLUSION AND DISCUSSION.

The main purpose was to find optimal matrices
that can be used in the error correction method proposed
in [16]. As can be seen from Figure 3, this method is not
rational, but under certain conditions, it is easier to reject
most of the messages than to correct them. It is not pos-

sible to use a message length equal to the length of
the message because Eve can easily find out about
the message by converting the syndrome back into
a message. Therefore, the classic model is chosen when
the length of the syndrome is twice less than the length
of the message. If the length of the message is 20 bits
and the length of the syndrome is 10 bits, then 1024 dif-
ferent messages will be needed for one syndrome, so it
has robustness against Eve’s attack. In addition, such
messages in our case are 50 pieces, so the probability of
finding the right message increases exponentially. But in
this case, common syndromes may occur with different
reports. You can increase the number of bits in a syn-
drome, or find a matrix in which the number of common
syndromes under certain. The optimal matrix for
the QKD system generates different syndromes under
three erroneous bits. The generated 10 x 20 bit Neal’s
matrix, with 4 of “1” in each column, showed the best
result in creating message syndromes to share an identi-
cal sifted key between Alice and Bob.

The process of discarding messages is not efficient
enough, therefore the object of future research is to
develop an algorithm for correcting errors in parts of
the sifted key in which Alice's and Bob's syndromes are
not matched.

REFERENCES.

[17 S. Wiesner, “Conjugate coding,” ACM SIGACT News, vol. 15,
no. 1, pp. 78-88, Jan. 1983, DOI: 10.1145/1008908.1008920.

[2] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtain-
ing digital signatures and public-key cryptosystems,” Commun. ACM,
vol. 21, no. 2, pp. 120-126, Feb. 1978, DOI: 10.1145/359340.359342.

[3] C. H. Bennett and G. Brassard, “BB84highest.pdf,” Proceedings
of IEEE International Conference on Computers, Systems and Signal
Processing. pp. 174-179, 1984.

[4] P. Sibson et al., “Chip-based quantum key distribution,” Nat.
Commun., vol. 8, no. May 2016, 2017, DOI: 10.1038/ncomms13984.

[S] M. Lucamarini, Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Over-
coming the rate—distance limit of quantum key distribution without
quantum repeaters,” Nature, vol. 557, no. 7705, pp. 400-403, May
2018, DOI: 10.1038/541586-018-0066-6.

[6] Z. Yuan et al., “10-Mb/s Quantum Key Distribution,” J. Light.
Technol., vol. 36, no. 16, pp. 3427-3433, 2018, DOI: 10.1109/
JLT.2018.2843136.

[71 H.-K. Lo, M. Curty, and B. Qi, “Measurement-Device-Indepen-
dent Quantum Key Distribution,” Phys. Rev. Lett., vol. 108, no. 13,
p- 130503, Mar. 2012, DOI: 10.1103/PhysRevl ett.108.130503.

[8] C. H. Park et al., “Practical plug-and-play measurement-device-
independent quantum key distribution with polarization division multi-
plexing,” IEEE Access, vol. 6, pp. 58587-58593, 2018, DOI: 10.1109/
ACCESS.2018.2874028.

[91 B. K. Park, M. K. Woo, Y.-S. Kim, Y.-W. Cho, S. Moon, and

S.-W. Han, “User-independent optical path length compensation
scheme with sub-nanosecond timing resolution for a 1 x N quantum
key distribution network system,” Photonics Res., vol. 8, no. 3, p. 296,
Mar. 2020, DOI: 10.1364/PRJ.377101.

[10] T. A. Eriksson et al., “Crosstalk Impact on Continuous Variable
Quantum Key Distribution in Multicore Fiber Transmission,” [EEE
Photonics Technol. Lett., vol. 31, no. 6, pp. 467-470, 2019,
DOI: 10.1109/LPT.2019.2898458.

[11] G. Brassard and L. Salvail, “Secret-key reconciliation by public
discussion,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes
Artif. Intell. Lect. Notes Bioinformatics), vol. 765 LNCS, pp. 410-423,
1994, DOI: 10.1007/3-540-48285-7 35.

[12] W. T. Buttler, S. K. Lamoreaux, J. R. Torgerson, G. H. Nickel,
C. H. Donahue, and C. G. Peterson, “Fast, efficient error reconciliation
for quantum cryptography,” Phys. Rev. A - At. Mol. Opt. Phys., vol. 67,
no. 5, p. 8, 2003, DOI: 10.1103/PhysRevA.67.052303.

®
@J Copyright (c) 2020 binam b. O.

€GT10T W SSHH-€TST/SESOT 01 -10d

https://doi.org/10.1103/PhysRevA.67.052303
https://doi.org/10.1007/3-540-48285-7_35
https://doi.org/10.1109/LPT.2019.2898458
https://doi.org/10.1364/PRJ.377101
https://doi.org/10.1109/ACCESS.2018.2874028
https://doi.org/10.1109/ACCESS.2018.2874028
https://doi.org/10.1103/PhysRevLett.108.130503
https://doi.org/10.1109/JLT.2018.2843136
https://doi.org/10.1109/JLT.2018.2843136
https://doi.org/10.1038/s41586-018-0066-6
https://doi.org/10.1038/ncomms13984
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/1008908.1008920
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.20535/2523-4455.mea.201253

32 EnexTpoHHi cuCTeMH Ta CUTHAIU

(A [13] Gallager, “Low density parity check codes,” 1963. [16] N. Walenta et al., “A fast and versatile quantum key distribution

a [14] D. J. C. Mackay and R. M. Neal, “Good codes based on very System with hardware key distillation and wavelength multiplexing,”
S sparse matrices,” in Lecture Notes in Computer Science (including — NewJ. Phys., vol. 16,2014, DOI: 10.1088/1367-2630/16/1/013047.

o subseries Lecture Notes in Artificial Intelligence and Lecture Notes in [17] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting

QE) Bioinformatics), 1995, vol. 1025, pp. 100111, DOI: 10.1007/3-540- Codes. Cambridge University Press, 2003.
m' 60693-9_13. [18] Radford M. Neal, “Software for Low Density Parity Check
<t [15] D. J. C. MacKay, “Good error-correcting codes based on very Codes.” 2012.

i sparse matrices,” IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399-431,

o 1999, DOI: 10.1109/18.748992.

q

a

§ Haniiimia no pepakuii 22 kBitHsa 2020 poky

=

—

S VK 621.3(045)

OntumanbHi LDPC marpuni 1Jis BUSBJICHHSA
MOMIIOK B KBAHTOBMX OiTax y cucremax QKD

binam b. O., ORCID 0000-0002-1341-1920

Hauionanpnuii TexHidHM yHIBepcuTeT Ykpainu "KuiBchbkuil oniTexHiYHUH iHCTUTYT iMeHi Iropst Cikopcbkoro”
Kwuis, Ykpaina

Anomayia—B naniii podori nmpoaHanizoBaHO MATPHLI NepeBipKH HAa NAPHICTh, fIKi MOXKYTh OyTH BHKOPHCTaHi B
MeTo/i BUNIPaBJICHHS MOMMJIOK Ha ocHOBI low density parity check (LDPC) marpunp B cucTeMaxX KBaHTOBOTO PO3NOAiTY
KkJo4iB. CucreMa KBaHTOBOIO PO3MOALIY KJIIOYIB Ma€ HEMHMHYYi NOMMWJIKM B NPOCIHOMY KJIIo4i, sIKi NOBHHHI OyTH
BUINPaBJieHi aJrOPUTMOM BUIIPABJIEHHS MOMMJIOK /UIsl CTBOPeHHS 3axXHIIeHOro KJw4a. Y npomy ananisi 1000-6iTui
npocisini kiaro4i po3ninsilorses Ha 50 yacTul, no 20 6iT B Ko:KHiil yacTuHi. AJropuT™ cTBoproe 50 cunapomis, no 10 oit B
CHHAPOMI, 110 BiINOBiIaI0Th KOXKHil YaCTHHI, 32 10MOMOI0I0 MEPEMHOKEHHS] MATPULb MEPeBiPKN HA MAPHICTH Po3MipoM
10 x 20. Marpuui mepeBipkM Ha MNApPHICTh CTBOPIIOTHCA AJrOPUTMOM, 3ampononoBaHum /[leBizom Makkeem Ta
Peadopaom Hinom. Ilpouec cTBOpeHHSI CHHAPOMY CKJIAJAETHCSI 3 MATPUYHOr0 mnepemMHOKeHHsI 20-0iTHOI 4yacTHHHU
NPOCISIHOT0 KJII0YAa HAa MATPHUIIO NePeBipKH HA NapPHicThb. AJIrOPpUTM nocujaae cpopmoBanmii cunapoMm Apyriii cropoHi. Ilin
Yyac mepenavi mizcJIyxoByBau Mo:ke NMEPEXONHUTH CHHIPOM, ajle BiH He MoJKe Ji3HATHCH TOYHE IOBIIOMJIEHHSI 3 CHHIPOMY,
HABITh SIKIIO BiH BOJIO/li€ MATPHIIEI0 NlepPeBipKH HA NapHicTh Tex. Jlpyra ctopoHa Takosx AIMTh 1i npocistHuii ka4 Ha S0
YacTHH, CTBOPIOE CHHAPOM 3 KOKHOI YaCTUHHU i MOPiBHIOE 3 OTPUMAHMM CHHAPOMOM. SIKIO CHHAPOMHM Pi3Hi, i YacTHHH
NpoCisiHUX KJII04YiB Binkuaawts. OnHak, yepe3 Te, 110 JOBKMHA NOBiIoM/IeHb ckiagae 20 OitT, a qoBxkuHa cuHapomis 10
0iT, MOXKYTh BUHHKATH CHUTYalii, KON Pi3Hi YaCTHHH MPOCITHOro KJIH0Ya MAaTHMYTh OTHAKOBi cuHaApomu. /s KaHoro
BUNAAKY KoxkHi 1024 moBigzom/ieHb OynyTh MaTH OAMH cHiIbHMIA cuHApPoM. ToMy HeoOXiTHO 3HAWTH TaKy ONTHMAJbHY
MATPHIIO, IKA 3HiMa€ iIMOBIpHiCTH OTPUMAHHS OJHAKOBMX CHHIPOMIB BijJ Pi3HUX YaCTHH NPOCIAHOr0 K/IKH04a.

Knrwouosi cnoea — QKD; LDPC; kopeKuyia noMuiok; Mampuysa nepesipKu Ha RApHicmv; nOCm-o0pooKa

O]
L®_ﬁ Copyright (¢) 2020 binam b. O.

https://orcid.org/0000-0002-1341-1920
https://doi.org/10.1088/1367-2630/16/1/013047
https://doi.org/10.1109/18.748992
https://doi.org/10.1007/3-540-60693-9_13
https://doi.org/10.1007/3-540-60693-9_13
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.20535/2523-4455.mea.201253

	Optimal Low Density Parity Check Matrices to Correct Quantum Key Errors for QKD
	1. Introduction
	A. Quantum key distribution.
	B. Analysis of existing error correction methods.

	2. Common syndromes.
	3. Shared messages and their dependency on QBER.
	4. Investigation of conflicting messages.
	5. Seed research for Neal’s matrices.
	6. Results.
	Conclusion and discussion.
	References.

	Оптимальні LDPC матриці для виявлення помилок в квантових бітах у системах QKD

