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Abstract—In this paper, the parity-check matrices that can be used in low density parity check (LDPC) based error  
correction method for quantum key distribution are analyzed. The quantum key distribution system has inevitable errors 
in sifted key that must be corrected by an error correction algorithm to create a secure key. In this analysis, 1000-bit sifted 
keys are divided into 50 parts. The algorithm creates 50 syndromes corresponding to each part by multiplying 10 × 20 bit 
parity-check matrices. The algorithm sends the generated syndrome to the other side, which also divides the sifted key into 
50 parts, creates a syndrome from each part, and compares with the received syndrome. If the syndromes are different,  
these sifted key parts are discarded. However, there may be situations where different parts may have the same syn-
dromes. Therefore, it is necessary to find such an optimal matrix that removes the probability of getting the same syn-
dromes at different parts of the sifted key.
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1. INTRODUCTION

A. Quantum key distribution.

Quantum key distribution (QKD) is a system that can 
securely share an identical key between two distant par-
ties, Alice and Bob [1]. Unlike modern classical crypto-
graphic protocols,  such as  RSA (Rivest–Shamir–Adle-
man),  which  is  based  on  the  practical  difficulty  of  
the factorization of the product of two large prime num-
bers  [2],  QKD  protocol  is  based  on  the  quantum 
mechanics.

Although the first BB84 protocol [3] for QKD was 
proposed in 1984, it is being actively researched. There 
are some subjects for research works on the QKD such 
as chip-scale system [4],  long-distance communication 
[5],  high  secure  key  rate  QKD  [6]–[8],  and  efficient 
post-processing [9]. 

The main task of the post-processing is error correc-
tion to share an identical secure key with Alice and Bob. 
Therefore,  it  is  necessary  to  explain  where  the  errors 
occur. The unreliable quantum channel is named because 
photons may cause noise to change the photon’s charac-
teristics. There may also be errors when accepting pho-
tons by Bob and misreading the state  of  the photon.  
The single-photon detecter, which is an extremely sensi-
tive  component  for  detecting  a  single  photon,  has 
inevitably has some noises,  such as Dark count,  After 
pulse,  also there is  Cross  talk from the other  channel 
[10]. Theoretically, the quantum key is not safe when  
the quantum bit error rate (QBER) is more than 11%. 
Usually,  in  commercial  QKD  system,  the  QBER  of  
the system is under control  below 5% which must be 
corrected.  That  is  why  they  use  error  correction  at  
the post-processing stage. It should also be noted that at 
the  post-processing  stage  and  at  subsequent  stages,  
the  exchange  of  information  between  Alice  and  Bob 

takes place via a classical  channel,  which with a high 
degree of probability can be considered as almost per-
fectly  reliability.  Therefore,  the  task  is  to  correct  
the errors that occurred during the phase of the photon 
exchange.

B. Analysis of existing error correction methods.

There are some error correction methods to correct 
quantum bit error, such as Cascade, Winnow, Low-Den-
sity  Parity-Check  codes  (LDPC).  Those  ideas  are 
adopted from the classical error correction methods. 

In the Cascade [11] protocol, in each pass, Alice and 
Bob agree on a random permutation that applies to their 
bits.

Winnow [12], like Cascade, breaks binary strings to 
match them into blocks, but instead of bug fixing using 
iterative binary bug fixing is based on Hamming code.

But these protocols work poorly over long distances, 
also with long-distance messages. It is necessary to use 
a  protocol  that  would  contain  the  check  bits  together 
with the main message at one time during transportation. 
On the contrary, the LDPC protocol has an advantage in 
the case of  long distance communication [13].  Nowa-
days,  the  computing  power  and  electronics  have 
improved, so the LDPC protocol has a lot of attention 
and developments on the LDPC code [14], [15]. 

Figure 1 is the overall  procedure of the QKD. At  
the error correction step, Alice and Bob have sifted keys, 
but they are slightly different from each other due to  
the background noises of the QKD system. The purpose 
of this phase is to reconcile the sifted keys so that they 
are the same and then pass them on to the next stage of 
privacy amplification. The main problem at this stage is 
that when transferring the sifted keys between Alice and 
Bob, it is necessary to protect them so that Eve could not 
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get the sifted key. To avoid this, you can use hashing 
protocols  to  protect  the information being transmitted. 
But this approach is not rational because of increasing 
computing  resources  and  the  processing  time  for  
the hash function. That is why there is another approach 
for  correcting  errors  and  protecting  information  from 
Eve.

Consider the known methods for error correction. In 
[16], researchers propose a full-cycle creating QKD sys-
tem. According to their error-correction step, one side of 
the  fresh  key  encodes  a  syndrome  and  sends  it  to  
the other side. In this case syndrome is a hash-function. 
We cannot convert syndrome to original message. And if 
Eve has syndrome, she cannot do nothing with this syn-
drome. Using it, we are sure that when error correction 
step, Eve will not know the information about the origi-
nal bits between Alice and Bob. The other side decodes 
the syndrome and compares the results with its own. If 
the results do not match, this key is discarded and a new 
one is sent.  We assume under certain conditions even 
fresh keys are  different,  they can  have the  same syn-
dromes. In this work, we will find optimal matrices, that 
let  to  us  to do  not  have  cases,  where  we  will  have 
the same syndromes. 

2. COMMON SYNDROMES.

In  the  classical  LDPC  applying,  first,  the  parity-
check matrix H is generated, in which the “1” are uni-
formly and very rarely located, and all other positions 
are  “0”.  Such  a  matrix  is  not  systematic.  By  using 
Gaussian elimination it is necessary to transform it into 
a systematic form [-PT | In-k], where In-k is a prime identity 
matrix, PT — binary matrix (in binary codes -P = P). 
From matrix H we creating generate matrix G = [Ik | P]. 
Usually,  one side,  Alice,  has  an output message m of 
size k that is converted into a codeword c of length n by 
a  matrix  G.  Therefore,  the  matrix  G has  dimensions  
k × n. The  k/n ratio is called the relative code transmis-
sion rate (or just code rate) [17]. Typically, this rate is 
1/2, 2/3, 3/4 and so on. The codeword is sent to the other 
side, Bob, through the noise channel. Bob accepts a vec-
tor  r,  which  may  differ  from  the  codeword  by  some 
number of bits. In a simple example, the resulting vector 
differs by one bit. Bob, using the matrix multiplication 
of matrix H and the resulting vector r, obtains a vector 
s called a syndrome: s = H*r. If,  as a result,  the syn-
drome has all zeros, then the resulting vector r has no 
errors and is equal to the codeword. Bob then decodes 
the vector into a message m that is equal to Alice's mes-
sage. If the vector r, in the simplest case, has one error, 
then the syndrome s will coincide with the column of  
the  matrix  H,  whose  number  will  be  the  number  of  
the error bit in the vector r.

In  QKD systems,  LDPC codes  cannot  be  used  as 
they would in classic applications. You cannot just send 
a  sifted  key  because  eavesdropper  (Eve)  can  find out 
about the sifted key and then there is no point in creating 
a secure key. Therefore, it is necessary to come up with 
such a method of correcting the errors in Alice and Bob's 
sifted keys so that Eve cannot find out about them. In 
[16] it  is suggested to create and exchange syndromes 
between the sides.  This idea needs to be explained in 
more detail. 

Figure 1. Overall procedure for the QKD

In Figure 1, in the first step, Alice encodes her infor-
mation  in  the  polarization  of  single-photon states  and 
sends it  to Bob. Bob detects single-photon states with 
the  selected  base  and  records  the  measurement  result 
into classical bits. After that, Bob sends the chosen bases 
to Alice,  who in turn discards the classical bits whose 
bases did not match with the chosen Bob [3]. As a result, 
at  the beginning of step 3,  Alice and Bob have sifted 
keys of the same length, but which differ by a certain 
percentage of bits. This is called the quantum bit error 
rate (QBER). 

Drawing on the analogy of the classic error correc-
tion  method,  QBER is  additive  white  Gaussian  noise 
(AWGN).

In the case of QKD, the two sides already have sifted 
keys, X and Y, which are not the same and need to be 
fixed. Alice cannot send her sifted key to Bob, because 
Eve immediately finds out about it. Therefore, it is sug-
gested to exchange syndromes. A syndrome is created by 
multiplying  the  sifted  key  by  matrix  H:  s  =  HXT.  
The proposed method does not require the creation of  
a  matrix  G.  Unlike  the  classic  case,  the  syndrome is 
unknown in advance (but can also be all zeros). It is not 
necessary to correct the sifted key X with the resulting 
s syndrome. This syndrome is sent to Bob. Eve, having 
received the syndrome has nothing to do with it.  Bob 
creates his syndrome ŝ by multiplying his sifted key by 
the matrix H: ŝ = HYT. The main idea is that if parts of 
the sifted keys are the same - the created syndromes will 
also be the same. If parts of the sifted keys are different, 
the  syndromes  should  be  different  and  these  parts  of 
sifted keys will be discarded.

In our research, it  was decided to use a sifted key 
with  a  size  of  1000  bits.  Using  LDPC  matrix  with  
1000 + “parity bits” is not rational because it takes a lot 
of  hardware  resources.  Instead,  we  propose  to  divide 
message for small parts and to create syndromes from 
each  part  independently  for  other  parts.  We  used 
the standard  matrix  size  at  which  the  coding rate  in  
the classical method is 1/2 and is one of common. To our 
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research  we  decided  to  investigate  not  big  matrices. 
There are proposed to use 5 × 10, 10 × 20, 20 × 40 size 
matrices. In these cases, we divide our 1000-bit message 
for 100, 50, 25 parts with 10, 20, 40 bits in each part 
respectively.

We chose 10 × 20 matrix as optimal. The reasons for 
this  choice  will  be  explained  later.  In  this  case,  
the length of  a  part  of  the sifted key is 20 bits,  and  
the created syndrome is 10 bits. Then the possible com-
binations of the sifted key may be 220, and the possible 
combinations  of  syndrome 210.  In  this  case,  one  syn-
drome will respond to 1024 different messages. There-
fore, when the messages are different, there may be situ-
ations  where  the  syndromes  will  be  the  same.  Then  
the error correction of the part will be failed. The solu-
tion may be to increase the length of the syndrome or to 
find a special H matrix, which, under certain conditions, 
will  not  cause  common syndromes  for  different  mes-
sages.

3. SHARED MESSAGES AND THEIR DEPENDENCY 
ON QBER.

To analyze the error correction algorithm,  proposed 
in  [16],  we arbitrarily  selected  messages  of  1000 bits 
length.  After  that,  we  randomly changed the  message 
bits depending on QBER. The simulation program was 
written in C language. The algorithm for adding error 
bits, for example, for QBER = 5% is as follows: 1) we 
generate a random number from 0 to 999 for each bit of 
the sifted key (1000 bits total), 2) if this number is less 
than 50 (in our case it is equivalent to 5% for QBER) - 
change this bit; if more - we save this bit. This does not 
mean that it will change exactly 50 bits in the message, 
but in Figure 2 it will be similar to a Poisson distribution 
with  a  mathematical  expectation  of  50  bits.  For  each 
QBER from 0.1% to 25% in  0.1% increments  (1 to  
250 bits, 1-bit increments),  we repeated this procedure 
100 times. Figure 2 lets us know, that we use Poison dis-
tribution to create errors in messages.

As a result, we have two messages: the original mes-
sage, which is the sifted key of Alice, X, and changed to 
a certain number of bits  equal to QBER, the message 
that is the sifted key of Bob, Y.

Next, we divide each sifted key from Alice and Bob 
into  50  parts,  20  bits  each,  and  compare  these  parts. 
Then count the number of parts that are the same. Ide-
ally, there will be 50 (all parts of one sifted key are equal 
to all parts of another sifted key). 

Figure 2. Changed bit distribution for 5% QBER

Figure 3. Identical parts of the message depending on QBER

Figure 3 shows the average number of messages that 
will  be  the  same  for  different  QBER.  According  to  
the  graph,  one  can  see  that  at  a  very  small  value  of 
QBER most parts of the sifted key are the same. Every 
time, Alice and Bob exchange 50 parts of original mes-
sage.  If  messagesare absolutely same,  all  50 parts are 
also same. In this case,  0 messages will be discarded. 
But  in  real  situation,  if  messages  are  different,  some 
parts of messages and their syndromes are also different. 
For example, at QBER = 5%, on average only 16 parts 
from 50 are same between Alice and Bob. Other 34 parts 
have at least 1 different bits, and they will be discarded. 

Consider other examples, 5 × 10, 20 × 40 size matri-
ces. We added to messages errors and divided for 100 
and 24 parts respectively. Results on Figure 4. 

On Figure 4, first graph shows results for 10 × 20 
matrix, same with Figure 3, but it is not on average. Sec-
ond graph shows results for 20 × 40 matrix. Third graph 
shows results for 10 × 20 matrix.

Obviously, the best solution is to divide the message 
into 100 parts. Then there is one error in the message 
will  be  divided  between two messages,  one  of  which 
will be rejected and the other will be saved. The number 
of  possible message  combinations will  be  210  = 1024, 
and the number of possible syndromes will be 25 = 32. 
And each syndrome will correspond to 32 possible mes-
sages.

Then  Eva  will  be  able  to  more  easily  determine  
the possible combinations of codewords, which is dan-
gerous, by the method of selection. On the other hand, if 
the length of the message is 40 bits, there will  be 240 

possible combinations and 220 possible syndromes. One 
syndrome will have more than one million possible mes-
sages, which will be a problem for Eva to find a possible 
codeword. However, with a small QBER, if there is only 
one error in the message - the whole message is rejected, 
it is not rational. From this point of view, the size of  
the messages chosen from the very beginning is the most 
successful  compromise  between  the  difficulty  of  Eva 
finding the original message and the number of rejected 
messages in the presence of an error. And a matrix of 
size 10 × 20 is the most optimal.
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Figure 4. Identical parts of the message depending on 
QBER for 50, 25, 100 parts of message.

4. INVESTIGATION OF CONFLICTING MESSAGES.

As stated above, even if parts of sifted keys are dif-
ferent,  there  may be  situations  where  syndromes  are  
the same.

At QBER = 5%, we expect our sifted keys to be  
50 bits apart. Of course, there may be a situation where 
these  50 bits are stocked at three parts, and then each 
part will contain at  least  10 changed bits.  But a more 
realistic  situation  is  when  these  bits  are  distributed 
evenly between all parts. Then one bit will be changed 
in each part.

We  created  a  new  syndrome  from  the  part  of  
the sifted key and the matrix H, which is the same for all 
parts  of  the  message.  The  matrix  was  created  using  
the  method suggested  by  David  Mackay and  Radford 
Neal in [14], [15]. Radford Neal has created open-source 
software [18]. We have integrated Neal’s code to gener-
ate the H matrix into our code.

Since  the  created  H  matrix  has  dimensions  of  
10 × 20 bits, it is enough for checking all combinations 
of 20-bit messages. Therefore, the need to investigate all 
combinations of errors of the original key of 1000 bits in 
length makes no sense. It  is enough to investigate all  
the combinations of a part of the message that has only 
20 bits.

Since the H matrix must be sparse, the number of "1" 
in the matrix should at least not exceed the number of 
"0". Therefore, we have created 10 matrices using Neal’s 
software,  5  matrices  for  “evencol” and 5 matrices  for 
“evenboth” methods. In each matrix, the number of "1" 
in each column is from 1 to 5. The seed value of the ran-
dom function is 1.

We used a message in which all 20 bits are zeros and 
changed the bits in every possible combination. First, we 
changed  one  bit  in  each  possible  position,  then  two, 
three,  etc.,  to  consider  all  possible  combinations  of  
the modified message. They then created the syndromes 

from these messages and compared them with the origi-
nal message’s syndrome. 

We  calculated  the  number  of  common  syndromes 
varying a certain number of bits. The results showed that 
with the “evenboth” method and number of 1 in each 
column is 4, which is optimal H matrix for applying the 
QKD system because QKD operates properly QBER is 
under  5%.  It  lets  to  us  to  use  optimal  matrix  that 
removes the probability of getting the same syndromes 
at different parts of the sifted key. In figure 5 we can see, 
that if we use this optimal matrix, we will not have same 
syndromes  of  messages  are  different  when  QBER  is 
under 16%. In graph, if quantity is 50, all syndromes are 
different if messages are different. Only in two cases we 
have  same  syndromes  if  messages  are  different. 
The X-axis and Y-axis are changed bits from 0 to 20 and 
the number of common syndromes from the original and 
changed message, respectively.

According  to  the  results,  when  the  number  of 
changed bits is less than 4, we do not have common syn-
dromes  in  different  messages.  As  mentioned  above, 
errors are distributed in the sifted keys evenly, and there-
fore at QBER = 5%,  from 1000 bits in the middle will 
change 50 bits. We have 50 parts of message, so in every 
part usually will change 1 bit. Our matrix will not have 
syndromes when change under 3 bits (15% from 20-bit 
parts of message). It is very rarely probability, that will 
change 4 or more bits, if QBER is under 5%. Result of 
same  syndromes  distribution  to  our  matrix  if  on  
Figure 6. 

Figure  5. Distribution of the number of same syndromes versus the 
number of changed bits

Figure 6. Error correction step
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Figure 7. Number of common syndromes at 4 changed bits

Figure 8. Error correction step

5. SEED RESEARCH FOR NEAL’S MATRICES.

These  results,  as  mentioned  above,  were  obtained 
when the seed value for the generation of the matrix was 
1.  We  conducted  studies  and  created  1000  different 
matrices where the seed value  was from 1 to 1000. Of 
these, 144 matrices did not have common syndromes, if 
they were only changed up to three bits in each message. 
So,  theoretically,  we  can  use  those  matrices  to  create 
syndromes to apply the QKD system.

Among these syndromes, when changing 4 bits into 
messages,  there  may  be  a  common  number  of  syn-
dromes.  For  seed  =  1,  the  number  of  common  syn-
dromes is 4. The total result for the 144 matrices found 
is in Figure 7.As you can see from the graph, the total 
number  of  common  syndromes  is  4-6,  but  there  are 
matrices  when the  number  of  common syndromes is  
1 which is enough for QKD condition.

6. RESULTS.

The complete error correction process based on [16] 
is depicted in Figure 8.

CONCLUSION AND DISCUSSION.

The main purpose was to find optimal matrices 
that can be used in the error correction method proposed 
in [16]. As can be seen from Figure 3, this method is not 
rational, but under certain conditions, it is easier to reject 
most of the messages than to correct them. It is not pos-

sible  to  use  a  message  length equal  to  the length of  
the  message  because  Eve  can  easily  find  out  about  
the  message  by  converting  the  syndrome  back  into  
a message. Therefore, the classic model is chosen when 
the length of the syndrome is twice less than the length 
of the message. If the length of the message is 20 bits 
and the length of the syndrome is 10 bits, then 1024 dif-
ferent messages will be needed for one syndrome,  so it 
has  robustness  against  Eve’s  attack. In  addition,  such 
messages in our case are 50 pieces, so the probability of 
finding the right message increases exponentially. But in 
this case, common syndromes may occur with different 
reports. You can increase the number of bits in a syn-
drome, or find a matrix in which the number of common 
syndromes  under  certain.  The optimal  matrix  for  
the  QKD system generates  different  syndromes  under 
three erroneous bits. The generated 10 × 20 bit Neal’s 
matrix, with 4 of “1” in each column, showed the best 
result in creating message syndromes to share an identi-
cal sifted key between Alice and Bob.

The process of discarding messages is not efficient 
enough,  therefore  the  object  of  future  research  is  to 
develop an algorithm for correcting errors in parts of  
the sifted key in which Alice's and Bob's syndromes are 
not matched.
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Оптимальні LDPC матриці для виявлення 
помилок в квантових бітах у системах QKD

Білаш Б. О., ORCID 0000-0002-1341-1920 
Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського"
Київ, Україна

Анотація—В даній  роботі  проаналізовано  матриці  перевірки  на  парність,  які  можуть  бути  використані  в 
методі виправлення помилок на основі low density parity check (LDPC) матриць в системах квантового розподілу 
ключів.  Система  квантового  розподілу  ключів  має  неминучі  помилки  в  просіяному  ключі,  які  повинні  бути 
виправлені  алгоритмом  виправлення  помилок  для  створення  захищеного  ключа.  У  цьому  аналізі  1000-бітні 
просіяні ключі розділяються на 50 частин, по 20 біт в кожній частині. Алгоритм створює 50 синдромів, по 10 біт в 
синдромі, що відповідають кожній частині, за допомогою перемноження матриць перевірки на парність розміром 
10  ×  20.  Матриці  перевірки  на  парність  створюються  алгоритмом,  запропонованим  Девідом  Маккеєм  та 
Редфордом  Нілом.  Процес  створення  синдрому  складається  з  матричного  перемноження  20-бітної  частини 
просіяного ключа на матрицю перевірки на парність. Алгоритм посилає сформований синдром другій стороні. Під 
час передачі підслуховувач може перехопити синдром, але він не може дізнатись точне повідомлення з синдрому, 
навіть якщо він володіє матрицею перевірки на парність теж. Друга сторона також ділить її просіяний ключ на 50 
частин, створює синдром з кожної частини і порівнює з отриманим синдромом. Якщо синдроми різні, ці частини 
просіяних ключів відкидають. Однак, через те, що довжина повідомлень складає 20 біт, а довжина синдромів 10  
біт,  можуть виникати ситуації,  коли різні частини просіяного ключа матимуть однакові синдроми. Для даного 
випадку кожні 1024 повідомлень будуть мати один спільний синдром. Тому необхідно знайти таку оптимальну 
матрицю, яка знімає ймовірність отримання однакових синдромів від різних частин просіяного ключа.

Ключові слова — QKD; LDPC; корекція помилок; матриця перевірки на парність; пост-обробка
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