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Abstract—In this work, a method of increasing the amount of data for training neural networks is proposed using
the possibility of using information about the experimental conditions of measuring the properties of metamaterials. It is
shown that the method is flexible and effective. The results of predicting the transmission coefficient of the metamaterial for
different angles of incidence of radiation and type of polarization are presented. Using the architecture presented in
the work, a high rate of learning and generation of new data was obtained with an error that does not exceed 12% for
experiments in one frequency range and does not exceed 31% if all experiments are used for training. The architecture of
the neural network and the method by which it is possible to easily change the number and types of experimental conditions
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are presented.
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l. INTRODUCTION

With the development of machine learning methods,
it became possible to use them to obtain new materials
research methods. One such method is an artificial
neural network. Methods of applying neural networks in
the field of materials science have been sufficiently
developed [1]-[3]. A more interesting direction is the
study of metamaterials using neural networks.
Metamaterials are materials that have a periodic struc-
ture and have physical properties that are not observed
in nature. With the help of metamaterials, it is possible
to obtain structures with electromagnetic and acoustic
properties that cannot be obtained naturally. In order to
obtain such properties, researchers, as a rule, model
the characteristics of metamaterials using numerical
methods — Mie theory, finite element method, transi-
tion matrix method, etc. [4]. Researchers have also
learned to use machine learning methods to predict the
characteristics of metamaterials [5]—[8]. In these meth-
ods, information about the structure or physical compo-
sition of metamaterials is usually encoded in a defined
format, as well as their experimental or simulated char-
acteristics. For this, a sufficient number of training sam-
ple elements is formed, after which a test and training
set is formed [9]—-[12]. The test set is used to check
the ability or practicality of using the formed (learned)
model for specific tasks [13], [14]. Different types of neu-
ral networks are studied — fully connected, recurrent,
convolutional and their combinations [15], [16].

The problem is that all these methods are limited in
the study of different types of metamaterials at the same
time. This means that all studies use limited information
about metamaterials, and accordingly, there are no
opportunities to generate new (examples of which are
not in the sample) metamaterials. Another obstacle is
the limitation in the formation of a sufficient amount of
data for training a neural network and its practical appli-
cation. In this work, a universal method of encoding
information about metamaterials was presented, with
the help of which it is possible to store information about
the physical composition and structure of the metamate-
rial [17]. It is shown that any metamaterial can be repre-
sented as a set of pixels, each of which can carry any
information — physical parameters, coordinates, etc.
The advantages of this approach are universality and
simplicity in forming a data sample. Disadvantages are
the need for a sufficient number of sample elements,
a long time for neural network training, and possible
complexity in optimization. The prediction accuracy is
sufficient to state that this approach is working and can
be used for further research as well as practical applica-
tions. The need for an effective and universal mechanism
for the use of experimental conditions for measuring
the properties of metamaterials is an important factor.
The task of implementing this need was solved in
the work.
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Fig. 2 Architecture of a neural network in the form of a simplified graph

1. NUMERICAL EXPERIMENT METHODOLOGY

A study where all the data were present was used to
predict the transmittance based on the structure, physi-
cal composition, and experimental conditions.
The following experimental conditions were used:
the angle of incidence of the radiation and the type of
radiation polarization. Coding of the topological struc-
ture, physical composition and experimental characteris-
tics (dependence of the transmission coefficient on
the frequency) was carried out as described in [17].
The data that was used were taken from the following
works — [18]—[22]. Each structure was a set of pixels, i.e.
it was defined by a 6x (number of pixels) matrix. Of
the six numbers, the first three are the coordinates of
the pixel, the other three are the electromagnetic pro
perties of the material that was located in those coordi-
nates. The dependence of transmittance on frequency is
represented as 40x2 matrices, where forty means
twenty coordinate points, and two is transmittance and

frequency. That is, each graph was represented as twenty
coordinate points.

In Fig. 1, a block diagram of processing information
about the structures, characteristics and experimental
conditions of metamaterials for its presentation in the
format required for a neural network is presented. As
you can see, the data goes through quite a few
conversions, as the difference in formats is significant.
The processing of structural information consists of
several main stages — conversion to a Dataframe,
addition of information about the structure to each pixel
(by iterating through the xrgb file), conversion to Nmpu
array and scaling to values from 0 to 1. Processing of
information about characteristics consists in parsing text
data, array formation and scaling to values from 0 to 1.
Processing of information about the conditions of
experimental studies is the same as for information
about characteristics. Then all information is stored in
a special .npz format, for more convenient access to all
data when deploying data to a neural network.

The architecture from [17] was taken as a basis. It was
further modified by changing the MaxPool layer (com-
pressing the data by 4 times instead of 10) and adding
rectification layers after each main stage (after convolu-
tional layers as well as fully connected) and adding a vec-
tor information conversion layer and changing the kernel
step from one to four (in some dimensions). These are
optimization solutions that have led to improved learn-
ing and reduced neural network training time. The main
input was branching information about the measure-
ment conditions and adding its coded version to the main
data vector, which is then processed by the last rectifica-
tion layer of the neural network. The complete architec-
ture is shown in a simplified form in Fig. 2.

In Fig. 2, INPUT — input block in the form of a matrix
of pixels; InstanceNorm3d — normalization; Cond3d — 3D
convolution; RelU is a layer with a straightened linear
node [23]; MaxPool3D — pooling operation with a value
of ten units; Flatten — conversion of data into a vector;
Fully Connected — a fully connected layer of the neural
network; Concatenate (torch.Cat [24]) — unification of
data tensors.

As shown in Fig. 2, the process of securing infor-
mation about the experiment begins with the coding of
this information. The conditions of the experiment were
as follows: angle of incidence of radiation and type of
polarization of radiation. The angle of incidence varied
for the same structures from 20 to 90 degrees. There
were two types of polarization — perpendicular to
the required (cross-pol) and required polarization
(co-pol). In all experimental studies, they refer to
the same types of polarization. The angle of incidence
means the angle between the beam and the plane of
the metamaterial. The conditions of the experiment
were presented at the beginning as three numbers,
which, after several layers of the neural network, were
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connected to the main vector shown in Fig. 2. As
128 neurons of basic information and 16 about the con-
ditions of the experiment — the last layer of the neural
network. The three numbers represented two types of
polarization and angles of incidence.

Advantages of this neural network — speed of oper-
ation — training takes 3-5 minutes using the Google-
Colab server; flexibility in use — the number of experi-
mental conditions can be changed as researchers need;
the basic metamaterial data is a matrix of pixels, where
each pixel is a vector of at least three, and can be
enlarged indefinitely, due to the fact that 3D convolution
can process data with an unlimited number of data chan-
nels; the output can be anything and everything will
depend on what is being matched.

The disadvantages of this neural network are
the need to present basic data about metamaterials in
the form of a pixel matrix, which can be obtained by
creating 3D objects [17] or by other methods; the need
for correct coding of all data into tensors suitable for
a neural network (e.g. torch. Tensor [24]); the need for
significant computing power.

1. RESEARCH RESULTS AND DISCUSSION

A number of numerical experiments were conducted
— using experiments in the frequency range from 0.2 to

0.6 THz; experiments in the frequency range from 137 to
375 THz and all together. Each characteristic (depend-
ence of transmittance on frequency) was represented as
40 numbers, where the first twenty numbers are
the scaled frequency value, and the last twenty values
are the transmittance. Frequency scaling occurred for all
characteristics within the same limits (from 0.2 to
375 THz). As will be seen later, this is strongly indicated
when predicting the frequency. Two characteristics were
generated for each case. The distribution between train-
ing and test sets took place at the proportion of
80%:20% of the total number.

In Fig. 3, it shows the structures that were used to test
the neural network.

In Fig. 4, it shows the characteristics that were gener-
ated on the basis of data in the frequency range from 137
to 375 THz for the structures in Fig. 3 (a), (b).

In Fig. 5, it shows the characteristics that were gener-
ated on the basis of the structure — Fig. 3 (c) based on
data in the frequency range from 0.2 to 0.6 THz.

In the second graph Fig. 5, it can be seen that
the deviation from the actual frequency is small (on
the Y axis — from 0 to 0.05), but at the same time,
the deviation in the transmission coefficient is sufficient
to argue that there is not enough training data in this
range to effectively predict from a practical point of view.

'Inrtraicéuplfiﬁg
1 coupling p,=150
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a0 o

Fig. 3 Schematic view of metamaterials: (a) p = 600 nm, [; =390 nm, [, = 165 nm, t,,, =8 nm, t; =110 nm, d = 150 nm; (b) / = 750 nm, w = 280 nm,
t =150 nm (thickness of the metal layer), d = 1000 nm (distance between cuts) h —the thickness of the dielectric layer; (c) All units are in microm-

eters. Antenna thickness: 1 um, The thickness of the substrate: 5 um, (

a) p, =150 um, (b) p,, = 45 um.
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Fig. 4 Real and predicted dependences of the transmission coefficient on the radiation frequency — the first graph for the transmission coefficient,
the scaled frequency is the same for the real and predicted for ease of presentation; the second graph is the dependence of the frequency on
the number of the output neuron. (a) For the structure presented in fig. 2 (a) with polarization — cross-pol, and the angle of incidence is 30°. (b)
For the structure presented in fig. 2 (b) with cross-pol polarization and an incidence angle of 90°.
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Fig. 5 Real and predicted dependences of the transmission coefficient on the radiation frequency — the first graph for the transmission coefficient,
the scaled frequency is the same for the real and predicted for ease of presentation; the second graph is the dependence of the frequency on
the number of the output neurons. Polarization — cross-pol and angle of incidence are 90°.

In Fig. 6, it shows the prediction of characteristics
based on a neural network trained on experimental data
in all ranges (from 0.2 to 375THz). It is clear that
the experimental characteristics in these ranges are
affected by various effects (plasmonic effects appear
closer to 1-10 THz), but the need to show the possibility
of predicting characteristics in different frequency ranges

is that the neural network can study physical dependen-
cies of any nature. From one point of view, this means
literally comparing numbers and letters, but from
another point of view, numbers and letters are made up
of the same pixels when represented as pictures.
The main thing when using a neural network is to present
information about the data in such a way that all
the information is used.

O]
@J Copyright (c) Kpucenko M. 1., 303tok M. 0. 2023


http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.20535/2523-4455.mea.287808

ISSN 2523-4455. MicrosystElectronAcoust, 2023, vol. 28, no. 3 287808.5

1.0 1
0.91 T /s
0.8 1
0.7
0.6 NS

0.54 \ v ’ N

Transmittance

0.44 v s

0.3 \ SN
N

\ 7

===Real NS v

027 —--predicted ‘

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Scaled frequence

0.7

ST~ === Real

/s N ~~" Predicted
061 ~ .

05{ / ~-

Transmittance
(=]
o

o

1

1

' ]

\

\

1

1

1

|

0.3 Lo

TN
I/ H

SN
0.2 ! \

VO

0.1 1 ~S N

’
~
»

0.5 0.6 0.7 0.8 0.9 1.0
Scaled frequence

087 . --- Real

0.79

’
]
1
1
1
1
1
g ]
0.6 H
]
]
0.5 i
]
]
1

1
\
1
\
1
\
0.4 A N 4

Transmittance

0.3 1 ]
0.2 o
1
\
o NN / \ N
1 1
L

004 =7

0.40 0.45 0.50 0.55 0.60 0.65
Scaled frequence

=== Real

=== Predicted
0.020

1

I

I

1

1

[}

1}

0.015 - 1
1
]

0.010

0.005 -

Scaled frequence

]
1
1
]
1
]
1
1
1
]
e

0.000 A

—0.005 A

—0.010 T T T T T

0.70 1 ---Real
=== Predicted ‘.

rs
0.65 e

=} =]
« o
[l o
s s
\
D
\
N,
\,
N

Scaled frequence

e

w

t=)

\

\

h)
\

0.45 4 s

0.40 - ,’I -7
-

T T T T T
0.0 25 5.0 7.5 10.0 125 15.0 175

114 === Real ;
=== Predicted .
Pt
.
1.0 // //
I,I ’/”
8 09 -~ -
< A
2 e o
£ 081 Rl
= - 7
5] i -7
3 074 LT
’/ ’/
// I’,
0.6 1 S
l” /’
e
L
054 -
.
0.0 25 5.0 75 100 125 150 175

Fig. 6 Real and predicted dependences of the transmission coefficient on the radiation frequency— the first graph for the transmission coefficient,
the scaled frequency is the same for the real and predicted for ease of presentation; the second graph is the dependence of the frequency on
the number of the output neuron. (a) For the structure presented in Fig. 2 (c) with polarization — co-pol, and the angle of incidence is 90°. (b) For
the structure presented in Fig. 2 (b) with cross-pol polarization and an incidence angle of 30°. (c) For the structure presented in Fig. 2 (a) with cross-

pol polarization and an incidence angle of 90°.

As can be seen, the prediction accuracy is much lower
if the total error is taken into account. The largest error
is observed by Fig. 6 (a) and Fig. 6 (c). The main thing that
is followed here is the preservation of the prediction of
the behavior of dependencies. This means that the neu-
ral network really learns about those dependencies that

are present in the data — structures with a physical com-
position of components and for different measurement
conditions.

The great advantage of this approach is that research-
ers have the opportunity to determine the influence of
measurement conditions on the accuracy of forecasting.
That is, as was shown, the last layer of the neural net-
work consists of two vectors — the main one (length 128)
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and the additional one (16 for measurement conditions).
It is clear that the value of the additional vector can be
set as needed, that is, not 16, but, for example, 128, but
then it will make physical sense? Numerical experiments
established that in the case of these data (which were
used in the work), the ratio between the main and addi-
tional data was optimal (from the point of view of fore-
casting accuracy). It is clear that this ratio may be differ-
ent from other data. Another advantage, as noted, is that
the number of experimental conditions that need to be
included can be completely different. That is, radiation
intensity data could be used for that data. For example,
for the same structure, the same conditions, except for
the radiation intensity, have the same characteristics of
the structure. In this way, we increase the amount of
data.

CONCLUSIONS

A number of numerical experiments were conducted
to generate dependence on transmission coefficient
depending on the radiation frequency for three cases —
using experimental data in two separate ranges and for
all of them together. It was found that the best accuracy
is observed for the case when for training uses character-
istics in the range from 137 to 375 THz. The lowest accu-
racy is observed when combined data is used — in
the range from 0.2 to 375 THz.

So, the frequency prediction error was 0.02, where
the coefficient prediction error was 0.13, which of course
means that this is not enough to use in practical applica-
tions with the data we have, but if we increase
the amount of data, then these indicators will improve.
The speed of prediction is several seconds, while
the training time is several minutes, which greatly
exceeds the speed of simulation (Li method, finite ele-
ment method, etc.) of various characteristics with such
a large amount of data about the structure and experi-
mental conditions. The amount of data has been
increased several times only due to taking into account
the change in experimental conditions, which makes it
possible to increase the accuracy of forecasting. A modi-
fied improved architecture of the neural network is
given, with the help of which it is possible to attach infor-
mation about the conditions of the experiment to
the data about the metastructure. It has been analyzed
that using experimental data, which are affected by vari-
ous physical effects, a sufficient amount of data is
needed so that the quality of forecasting and generation
of new characteristics is sufficiently accurate for practical
application. It is indicated that the results of numerical
experiments make it possible to state that this approach
to encoding information about the metastructure (topo-
logical structure, physical composition of components,
target characteristics) and experimental conditions is
useful material for consideration and there are prospects
for the practical use of this method in applied problems.
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BukopuctaHHA iHbopmaLlii Npo yMmoBU
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HauioHanbHUI TEXHIYHWUI YHiIBEpCUTET YKpPaAiHK

«KMIBCbKUIM NONITEXHIYHUI IHCTUTYT imeHi Iropsi CikopcbKoro» R 00syn5v21
Kuis, YKpaiHa

AHomayia—Ha paHuii MoMeHT icHye npo6nema 36inblIeHHA KiNbKOCTI enemMeHTiB A8 HaBYaHHA HEMPOHHUX MepeXK, AKi
NOBUHHI NPOrHO3yBaTU B/IaCTUBOCTI MeTamartepianiB. Y AaHiii poboTi 3anponoHoBaHO meTop, 36inblieHHA o06cAry AaHux ana
HaBYAHHA HEMPOHHUX MepPeXK 3 BUKOPUCTAHHAM MOXK/IMBOCTI BUKOPUCTAHHA iHpOpMaLii Npo eKcnepumeHTanbHi yMOBU BUMI-
plOBaHHA BAAacTUBOCTE MeTamaTepianiB. MOKa3aHo, WO MeTog rHyuKuii i epekTuBHUA. HaBegeHo pe3ynbTaT NPOrHo3yBaHHA
KoedilieHTa NponycKaHHA meTamaTtepiany Ana pisHUX KyTiB Nafalouoro BUNPOMiHIOBaHHA Ta TUNY Noaspwusauii. BuKkopucrtosy-
04M NpeacTaBaeHy B poboTi apxiTeKTypy, 6yna OTpMMaHa BUCOKA WBUAKICTb HABYAHHA i reHepauii HOBUX AaHUX 3 TOYHICTIO,
fiIKa He nepeBuLLye 12% AnA eKCNepMMEHTIB B O4HOMY YaCTOTHOMY Aiana3oHi i He nepeBuLlye 31%, AKLWO ANA HaBYAHHA BUKO-
PUCTOBYIOTLCA BCi eKcnepumeHTU. MpeacTaBneHo apxiTeKTypy HEMPOHHOI Mepei Ta MeToa, 3a AONOMOrol AKOro MOXKHa
Nerko 3mMiHIOBaTH KiNbKiCTb Ta TUNKU YMOB eKcnepumeHTy. [nA nporHo3yBaHHA KoedilieHTa nepesadi Ha OCHOBI CTPYKTYpM,
disnuHoro cknagy i ymos eKkcnepMmeHTy BUKOPUCTOBYBAIOCA AOCAIAXKEHHSA, Ae 6ynn npucyTHI Bci AaHi. Byno nposegeHo pag,
YnuCceNbHUX EKCMEPUMEHTIB — 3 BUKOPUCTAaHHAM A0CNiAiB B giana3oHi yactor Big 0,2 go 0,6 Tly; TiAbKM eKcnepMmeHTH B Aiana-
30Hi yacToT Big 137 go 375 Tly i Bce pasom. KoxkHa XxapaKTepucTUKa (3a1eXHicTb KoedilieHTa NponycKaHHA Big YacToTu) npea-
crasnsnaca y surnagi 40 uncen, ge nepuwi ABaguUATb YMcen — maclutaboBaHe 3HaUEHHA YACTOTH, A OCTAHHI ABagUATb — Koeodi-
Li€HT nponycKaHHA. MacwTtabyBaHHA 4acToT BigbyBanoca Ana BCiX XapaKTEPUCTUK B OA4HAKOBUX merKax (Big 0,2 ao 375 Tlu).
Ak 6yae BUAHO Aani, Lie CMAbHO BKA3YETbCA NPU NPOrHO3yBaHHI YacToTU. [nA KOXKHOro BunagKy 6yno cdoopmoBaHo ABi xapak-
TepUCTUKKN. Po3noain mik HaBuanbHUM i TectoBum Habopamu Bigbysasca y nponopuii 80/20% Big 3aranbHoi KinbKocti. Byno
BCTAHOB/IEHO, L0 HaliKpaLla TOYHICTb CNOCTEPIraETbCA A4NA BUNAAKY, KOAU ANA HAaBYaHHA BUKOPUCTOBYIOTHCA XapaKTEPUCTUKM
B AianasoHi Big, 137 go 375 Tlu,. HaliHUKYa TOUHICTb CNOCTepiraeTbca NPU BUKOPUCTaHHI KOMGiHOBaHUX JaHUX. 3agaHa moau-
¢ikoBaHa BAOCKOHANEHa apXiTEKTYpa HeMiPOHHOI MepeKi, 3a 4,0MNOMOro AKOi MOXKHa NPUKpPINABaTH iHGopMaL,ilo NPo ymoBU
E€KCMEePUMEHTY A0 AAHUX MPO MeTacTpyKTypy. [poaHanisoBaHo, WO 3 BUKOPUCTAHHAM E€KCNEPUMEHTA/IbHUX AaHUX, Ha AKi
BN/IMBAIOTb Pi3Hi $i3MUHi BNAIMBU, HEOBXiAHA A0CTaTHA KiNbKICTb LUX AaHUX AN TOro, Wwo6 AKicTb NPOrHo3yBaHHA Ta reHepauii
HOBUX XapaKTepPUCTUK Byna [OCTaTHbO TOYHO AR MPAKTUYHOrO 3aCTOCYBaHHA. 3a3HAYEHO, WO Pe3ybTaT YUCENIbHUX eKcne-
PUMEHTIB 4,03BONAIOTb CTBEPAKYBATY, L0 TaKUiA Niaxig, Ao KogyBaHHA iHPpopmauii npo meTacTpyKTypy (TONoMOriuHy CTPYKTYpY,
}i3nuHMI1 CKNag KOMNOHEHTIB, Li/IbOBI XapaKTEePUCTUKM) Ta YMOBU €KCNEPUMEHTY € pobounm i € nepcneKTUBM 1Moro NpaKkTUy-
HOrO BUKOPUCTAHHA B NPUKIAAHUX 3a4a4aX.

Knrouoei cnoea — memamamepianu; 3D-320pmkoea HelipOHHA Mepexa; yMmoeu eKkcriepumeHmy.

(1)
pyright (c) Kpucenko M. 1., 3030k M. O. 2023


http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.20535/2523-4455.mea.287808
https://orcid.org/0000-0002-5612-9474
https://orcid.org/0000-0001-9116-7217
https://ror.org/00syn5v21

	Using Information about Experimental  Conditions to Predict Properties  of Metamaterials
	I. Introduction
	II. Numerical experiment methodology
	III. Research results and discussion
	Conclusions
	References


	Використання інформації про умови  експерименту для прогнозування  властивостей метаматеріалів

