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Mathematical simulation of electromagnetic wave propagation in
inhomogeneous lines

Analytical study of electromagnetic wave
propagation is done in the case of isotropic inho-
mogeneous lines in the presence of the so called
expofunctional influences. Mathematical simulation
is based on the corresponding boundary problems
whose PDE (partial differential equation) is the
general wave one regarding the unknown
electromagnetic field intensities. This PDE, in its
turn, is generated by the specific form of differential
Maxwell system. Solvability criterion of the latter is
proved in terms of equivalence to the general wave
equation in the class of non generalized functions.
Those boundary problems explicit solutions are

suggested using classical integral transform
method. Reference 20.
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Preliminaries

Electromagnetic field is the physical essence of
signals and waves whose propagation can be de-
scribed mathematically by the systems of PDEs
with respect to unknown vector field intensities [17,
16]. Such systems represent analytical modeling of
industrial / physical processes in the various kinds
of media, and their explicit solution remains
traditionally required even nowadays when
computer technique develops so fast. Actually, the
mentioned research area concerns almost all

Further, in the case of systems of ODEs (ordinary
differential equations) that are responsible for the
simplest, even trivial, vector field modeling, an ex-
plicit solution is not of great problem. It concerns
diagonalization procedure reducing initial matrix
system to the equivalent union of scalar equations
with respect to only one component of unknown
vector field function [13]. However, as far as it is
known, most naturally applied statement of the
finite-dimensional system of PDEs dealing with
general mathematical simulation of electromagnetic
field processes and / or effects, has no proper
unified analytical study even in terms of
diagonalization method. It explains the main reason
why suggested results concern not only exact
theoretical investigation of specific electrodynamics
phenomena, but tentatively show common
approach of vector field problems’ research basing
on the operator matrices and systems of PDEs, in
particular.

The given paper is generated by [11, 9, 18]
treating with reduction of differential Maxwell sys-
tem to two equations in the specific case of elec-
tromagnetic field behavior. The same fact was
noticed in [12] where kernels of expofunctional
influences did not depend on time or turned out to
be harmonic regarding the temporal argument.
Basing on the experimental data of [12], it was
shown there in [11] that the third and fourth
differential Maxwell equations represented corollary
of two other while medium was expofunctionally

modern electrodynamics trends including excited remaining homogeneous isotropic and
electronics and system theory. linear. Thus the so called symrpetrlcal dlffere-n.tlal
Maxwell system has appeared in [10] generalizing
the original system from [11]:
T T . _.T r. ~ T
rot| H—E | =[c+saaa,r+uaéﬂ [EH] +[jOS,eos} ™)

-
In (1):[ J is the two-dimensional transposed

matrix column; E,H =E(xy,zt),H(xy,zt) are the

unknown electromagnetic field vector intensities
with scalar components

EyHy =E; (x,y,z,t),Hk(x,y,z,t) (k :ﬁ) ;

Ol ,84 = CONst > 0 determine specific conductivity,

absolute magnetic and dielectric permeability of the
medium respectively. Partial differential operators

look like 66 = 60 + A, 60 = %t ;A =const>0is the

signal parameter exciting the medium and sign in
front of it means the reaction of medium. Absorp-
tion of signal corresponds to the “+”, and activity of
the medium connects with the “-“. Theoretical con-
stant r > 0is responsible for the symmetry of the
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right parts in (1), and is accepted for future mathe-
matical computation. At the last stage, r can be
deleted not infringing the original physical problem
statement. The given functions

jOS 60S _jOS 4\ 1 1) 60

scalar components are
j,?s,e,(()s :jl(gs(x,y,z,t),e,(()s(x,y,z,t) (k :ﬁ)
describe the outside current sources and intensi-

ties. Vectors E,I:I,]Os,éos belong to those func-

tional classes that are required later by the particu-
lar boundary problem statement.

Analytical study of the original Maxwell system
was not proposed in [11], and has appeared later in
the general case of [10] using operator analogy of
the algebraic Gauss method [15]. Thus (1) was re-
duced to the general wave equation with respect to
the unknown electromagnetic vector field intensi-
ties [10]. The same result was obtained for inho-
mogeneous media when o, 4,6, were continuous

X,y,z,t) whose

functions over the space (x,y,z), and in both

cases, the corresponding general wave PDE was
solved explicitly [8].

Nevertheless, suggested mathematical method
of operator diagonalization did not permit simulat-
ing directly specific industrial problems of technical
electrodynamics. It was explained by restrictions
related with matrix operator elements’ invertibility
[8]. This condition implied investigation of all opera-
tor kernels and their following intersection. Such
approach was rather cumbersome and finally
vague.

Only the inverse matrix operator construction
[8] jointly with the solvability theorem has allowed
formulating correctly those boundary problems
analytically describing electromagnetic field fea-
tures. Specific statement of (1) was considered
briefly in [2], and a medium was homogeneous
there. This case had to be studied separately since
could not be got as the corollary of (1) [8]. More in-
teresting inhomogeneous special statement of (1)
was proposed briefly in [3] but without explicit solu-
tion of the relevant boundary problems.

Hence, the goal of the given paper is mathe-
matical modeling of the specific electromagnetic
wave propagation governed by (1) and analytical
study of improved boundary problems from [3] for
excited inhomogeneous case.

The problem statement

Let the specific inhomogeneous case of (1) be
given

T
81 [H,—E]T :|:G+8868, r+ua[5>5} X
T

In (2), all designations remain the same as in

()

. Y, _
(1), only instead of rot, operator 61—4)( ap

pears. The original vector functions from (1) are
scalar here, though their physical meaning does
not change, i.e.

E,H,jOS,eOS _

= E(xt),H(x1),/98 (x.t),695 (x.t)

Restrictions concerning these functions’ be-
longing to the particular class are not as rigorous
as earlier, and it is natural because of the simpler
structure of (2) in comparison with (1). Scalar na-
ture of electromagnetic field intensities and inho-
mogeneity of (2) with continuous functions

O,lg.64 = 0(X),1g(X).e4(X) cause mathematical

description of electromagnetic wave propagation in
expofunctionally excited inhomogeneous lines. Be-
sides, inhomogeneity does not influence on the fur-
ther investigation procedure [2]. As it appears in
[3], only solvability criterion of (2) must be consid-
ered more carefully than in the similar homogene-
ous case [2].

Taking into account all recent information, it
should be noted that explicit study of (2) consists of
three stages. The first and the second steps are
shown completely in [3]. They deal with reduction
of (2) to the equivalent wave PDE using the inverse
matrix operator construction and solvability criterion
statement. The latter is proved basing on the inter-
relations between (2) and the general wave equa-
tion. The last third stage concerns at first, improved
formulation of boundary problems from [3] mathe-
matically modeling electromagnetic wave propaga-
tion. Secondly, those problems proper analytical
study that was not performed in [3], is done in the
present paper.

Main results

Appealing to [3], the following matrix form is
written for (2)
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MF =f,
= {my

Yij=1
={myq =-myy = dg;myp = ~Cimyy = -DY;

C=oc+e,05 D=r+uydl; F=F(xt)=[E H] ;

@)

T
f= [jOS, eOS} , and the inverse operator

1__ -1
M~ = ~(detM) M @)

is found, where

(2,52

is the determinant of M. Partial differential operator

52
0 from (5) looks as

- 2

6% =CD =pge, (66) +(Gua +rsa)86 +or, (6)

and each “operator power” implies usual consecu-

tive operator effect. E.g., M2 means double appli-
cation of M.

As it was shown in [3], influence of (4) — (6)
upon (3) leads to the general scalar wave PDE re-
garding unknown electromagnetic field intensities

—( 12+53)F=f*,

T T
% X% gk *
relgs) =l o] r
T
E3
f =[D, 8] f. 7)
Investigation of (5) as the square operator polyno-
mial with respect to 68 while i, (x),e4(x)#0,
gives the real opportunity getting those conditions

1

when inverse matrix operator M~ ' exists: either

612 >(0'\/,ua/ga —r\/ga/ya)2/4, or
612 S(G\/ua/sa —r\/sa/pa )2/4 and

80 #=FA—

{(G/ga ”/”a)i\/(("/ga —/kg )2 _4512/(”a8a))]

(8)

9)

If pa(x),sa(x):o [7, 19] then instead of (8), (9)

such inequalities come

Hg :0:>812 ¢—r(saa(”3 +G),

tg=0=0F #-o(ug0p+r|] (10

Formulas (8) — (10) are based on the classical

requirements of inverse operator M_1 existence. It
means that KerM =& [14], where the left part is
the kernel of original operator M . Numerical values
in (8) — (10) are understood as acting with the cor-
responding class of functions, and sign reversal in
front of A in (9) is independent of ,+ near the

square root “~/ " there.

Solvability criterion of (2) was proved com-
pletely in [3] and sounds like that: specific case (2)
of the symmetrical Maxwell system (1) is solved
explicitly in the meaning of its equivalence to the
general scalar wave PDE (7) iff conditions (8) —
(10) are true. Only ordinary classical, non general-
ized functions are taken into account.

Comparing solvability conditions (8), (9) with
those from [2], one can notice their identity. How-
ever, in the present inhomogeneous case,

c(x),ua(x),sa(x) are continuous functions and

their numerical values can be as positive, as nega-
tive. In terms of (8), (9), the last fact implies
signp, =signe,, and is in conformity with the

necessary condition following from the electrody-
namics equations. It concerns possibility of wave
propagation only in those media whose signs of
magnetic and dielectric permeability are equal [7,
19, 20]. In such cases, the backward waves appear
extending to the whole volume of infinite medium,
and parameters of the medium become controlled
owing to the magnetic field modification [20]. Be-
sides, those media whose both electromagnetic
field permeabilities are negative, form bases of the
metamaterials construction [7, 19, 1, 5] whose im-
portance of application to modern radio engineer-
ing, telecommunications, electronics and system
theory is incomparable. It includes also creation of
absolutely new types of waveguides, filters, anten-
nae, etc. [7, 19, 1, 5].

The last paragraph textually almost repeats
analogous information from [3, p. 149]. It was done
deliberately clarifying the main tendency of current
research and simplifying understanding for readers.

At last, typical boundary problems are written
simulating mathematically corresponding wave
propagation in inhomogeneous lines:

—(@12+53)F=f*, (11)
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x,te[0,+oo):F(x,O):g1(x),F(x,t)|t_)+OO:O;
F(0.) = 9 (£). 95 F (x.t)]  _y 1o =0 (K =01).
x e[0,+0),te[0,7]: F(x,0)= g3 (x), F(x7)=9g4 (x);
F(0.t) = g5 (1), 5 F (x8)|  _ 100 =0 (k=0,1).
{XG[O,b],te[O,r]:F(x,O)=g6(x),F(x,z-)=g7 (x);
F(0.t)=gg(t), F(bt)=9gg(t).

(12)

(13)

(14)

Everywhere in (12) — (14), general wave PDE
is from (11) and is determined completely in (7).

The given functions  g,(x)(/=134,67),
g; (t) (i=25,8,9) are continuous in the respective

intervals, and (11) — (14) are solved explicitly using
integral transform method [6]. It is applied to the
spatial variable x taking temporal argument { as
the main one. In the cases of (11) — (13), the con-

o0

tinuous sine Fourier transform | sinaxdx is used,
0

and for (11), (14) its finite analogy

b
% ) sin(%xjd X is expedient.
0

Because of the finite time interval in (13), (14)
and similarity of both sine Fourier transforms’ ap-
plication, it seems reasonable to solve (13), (14)
simultaneously, as one problem with common inte-
gral operator

d p=a:d=wx b=rx
S:%jsinpxdx: p—ﬁn' deb (15)
0 Ty T

whose application to (11), (13), (14) gives
So2F = g* - p?F,F = F(t) = SF;

(18)

In linear inhomogeneous ODE (17) generated
by (11), constant coefficients are

q= 5/33 +r/ﬁa +24,

c=22 iﬁ(&/?a +r/ﬁa)+(5/r—p2)/(ﬁa§a)

and everywhere, the above written “bar” deter-
mines transformed function in terms of S from (15),
(16). Transformed conditions (18) follow from (13),
(14).

Explicit solution of common transformed
boundary problem (17), (18) is looking for using the
known technique [13] and following expression

Fafy+h= 1(Cjo +Cj(0))exe(ot).

(19)

where: F, / F, is the general / particular solution

of homogeneous equation regarding (17) and in-
homogeneous (17) itself;

o; :(—q+(—1)j+1\/5j/2 (j=12) are the real
2

roots of performance equation [13] v~ +qw+c =0
whose discriminant
o _\2 2/ _
Dz(a/sa—r/ya) +4p /(yaga)>0 and
W —wy = JD. Unknown functions
Cj (t) (j=12) are found from the differential sys-
tem
2 (k)

pae (Oexp(wt)) " KA (k=0.1)

Jj=1
and look as

sj(t)=Cj(t)=
:(_1)f+1/(JE)jexp(-wjt)Edt . (20)

(j=12)
Arbitrary real constants CjO (j=12) are de-

termined by the transformed initial conditions (18)

2
j§1(cj0+sj(o)):9_70’

j% 1(Cj0 +5; (r))exp(a)jr) =g,
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and are written below
CjO = (—1)/ [58 exp[ra)(_1)j+1 +j}—§j}/(exp(a)1r)—exp(a)2r)) (j=12),
- = 2 e 2
90:90‘j§13j(0) g =9,- % Sj(f)exp(a)jr). 21)

J
Then originally unknown electromagnetic inten-
sities F from (11), (13), (14) are got applying to (22)

the inverse operator S_1 regarding (15)

0
[ sinpxdp, p=a
0

s 1= F=s"'F.

2
T
sinpx, p =zn/b

b
Tp=1

1 ™M8

n

Hence, the last third step of study is done and
the goal of the present article is almost attained.

Conclusions

Coming to the virtues and drawbacks of given
paper it should be noted at first that the purpose is
really almost attained”. It is explained by the lack
of solution of (11), (12) that must be done sepa-
rately because of the second initial condition from
(12). As it was shown in [4], even the similar ho-
mogeneous case demands careful study, not say-
ing about inhomogeneity that requires more accu-
rate and thorough analysis. So, detailed explicit so-
lution of (11), (12) is prepared for the nearest publi-
cation.

Further, though numerical implementation of
(11) — (14) for particular industrial statements is not
proposed yet, it is planned to be ready soon.

Turning to the suggested inverse matrix opera-
tor method, it is easy to guess that complication of
matrix structure and increase of its dimension
sharply exaggerates determinant study and crea-
tion of solvability conditions. Moreover, present
procedure can be applied only to the inhomogene-
ous systems. It is quite natural because nontrivial
solutions in homogeneous case are got owing to
the determinant zero value that is not valid for in-
homogeneity [15]. Nevertheless, in spite of lacks of
the given method, the main idea and inverse matrix
operator construction look useful as from theoreti-
cal, as from applied viewpoints. Future develop

j=1
Substituting (20), (21) for (19) one gets solution
of (17), (18)

— 2 i+ % —% B h
F= 21(—1)1 1[{91 -90 exp[ra)(_1)j+1 N }J/(exp(a),]r)—exp(a)zr))+(\/5) 1jeXp(—a)jt)h dt]exp(a)jt).(ZZ)

ment of suggested results consists of improvement
on the analytical inverse matrix operator procedure
for those complicated problems of technical elec-
trodynamics whose mathematical description deals
with systems of PDEs and other operator equa-
tions.

Moreover, determinant of the original matrix
operator is completely responsible for its structure
and inverse matrix operator existence. As the re-
sult, corresponding solvability conditions appear
allowing correctly reduce the initial vector problem
to the union of scalar ones. Each of the latter de-
pends on the only one unknown functional compo-
nent. Generalization of this procedure for arbitrary
finite-dimensional systems of PDEs is obvious bas-
ing on the operator analogy of ordinary inverse al-
gebraic matrix construction [15]. Suggested
method together with solvability theorem allows
finding correct boundary problem statement that
gives, in its turn, the right mathematical modeling of
respective physical or engineering process.

Considering the last modest advantages of the
article, it is easy to notice that in comparison with
[3] boundary problems statements are partially im-
proved. Thus, in the second initial condition of (12),

according to [4], instead of g,(x) from [3], the

more reasonable zero value is written. In (14), par-
ticular case of xe[0,z] from [3] changes

intox €[0,b],Vb>0.

Further, solvability criterion of (2) is general in
its form meaning for homogeneous [2] and current
inhomogeneous cases. Not taking into account
(10), notation of (8), (9) remains the same as in [2]
though o, u,,&, are functions now. Moreover, this

theorem proves equivalence between specific dif-
ferential Maxwell system (2) and general wave
PDE (7). Suggested result allows formulating re-
quired boundary problems for (2) in terms of (7). It
is clear, that such approach is easier than dealing
with (2) directly.
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U30MpPOrHbIX HEOOHOPOOHbIX JIUHUSIX NPU HANUYUU mak Ha3bleaeMbiX SKCMOyHKUUOHaIbHbIX 8030elicm-
sul. Mamemamudeckoe modesnuposaHUe OCHO8aHO Ha COOMBEMCMBYWUX Kpaesbix 3adayax, 20e YLy
(OuhbpepeHyuanbHoe ypasHeHUEe 8 YaCmHbIX MPOU38O0HbIX) S8r19emcss 0bUWUM B80JTHOBbIM YpasHEHUEM
OMHOCUMESIbHO UCKOMbIX HanpsikeHHocmel anekmpomasHumHoe20 rons. JaxHoe Y[Y, e ceoto o4yepels,
rnopoxd0aemcsi dughghepeHyuanbHoU cucmemol Makceenna crneyuanbHo2o guda. Kpumepul paspeuwu-
mMocmu amol cucmembi 00Ka3aH 8 CMbIC/Ie 3K8UasieHmMHocmu obujeMy 80/THOBOMY YpPaBHEHUIO 8 Kracce
HeobobWeHHbIX hyHKUUU. TOYHOE peweHuUe 8bILEYNOMSHYMbIX Kpaesbix 3aday rosly4eHo Kraccu4e-
CKUM Memodom UHmeezparibHbIX rpeobpasoeaHuli. buon. 20.

KnioueBble crnoBa: mMamemamu4eckoe MOOesupo8aHue, PacripocmpaHeHuUe 3/1eKmpomMacHUmHbIX
80J1H, HEOOHOPOOHbIe NTUHUU, duthchepeHyuanbHas cucmema Makceenna, obujee 80/THO80E ypasHeHUe.
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