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Identification of the probability density of the sum of the signal with
gaussian mixture distribution and gaussian white noise

B paboTe peweHa 3agaya nony4yeHus nnoT-
HOCTU BEPOATHOCTEN MpoLecca B Buae CyMMbl
6enoro wyma v curHana, nnoTHOCTbL BEPOATHO-
CTe KOTOPOro OMUCbLIBAeTCA CMeCbK HOp-
ManbHbIX pacnpegeneHun. MNpeanoxeH meton
BOCCTAaHOBJIEHMSI MJIOTHOCTU BepPOATHOCTEM
MOJIe3HOro CUrHana ¢ UCNosib30BaHNEM OLIEHOK
KYMYNSIHTHbIX Ko3dhdmumeHTOB M anroputma
naeHTUduKkaumn.

The problem of obtaining the probability
density of a process that is a sum of white
noise and a signal with a Gaussian mixture dis-
tribution is solved in this paper. Using esti-

mates 02, 74 and yg, and the identification al-

gorithm the probability density of the payload
signal was reconstructed.

Keywords: Gaussian mixture of distributions,
probability density, cumulant coefficients, white
noise.

Introduction

The problem of analyzing a process comprising
signal and noise is common in engineering practice
and is most often encountered when solving opti-
mal signal reception tasks [1]. Here, processing of
the received signals is typically based on the meth-
ods of mathematical statistics. A classic example of
an optimum receiver is a receiver of known (deter-
ministic) signals in the presence of white Gaussian
noise.

The main difficulties arise when the signal is
not deterministic, but stochastic, particularly if it is
necessary not only to detect the signal, but also to
determine its characteristics and estimate its pa-
rameters [2]. Detecting and estimating the charac-
teristics of fluctuation signals in the presence of
noise is one of the applications. It should be noted,
that the quality of the solution of this problem de-
pends on the correct choice of signal and noise
models. One of the models that describe the distri-
bution of a fluctuation signal is a mixture of distribu-
tions [3], in [4], a mixture of distributions is used to
describe the probability density of a speech signal.

In this paper we propose a solution of the prob-
lem of obtaining the probability density of the proc-
ess that is the sum of white Gaussian noise and
signal with a Gaussian mixture distribution, i.e.

C(t)=s(t)+&(t) (1)

where s(t) is the signal, &(t) is Gaussian white

noise.

Also taken into consideration cumulant coeffi-
cients of the process (1) and their usage for solving
problems of detection and recover probability den-
sity of payload signals.

To obtain the probability density of the process
&(t) we mast use the convolution formula

P (¥)= [ P (y—x)ps(x)dx
- , (2)
which describes relation between probability densi-
ties of each process and sum of that processes.
As noise £(t), we will consider a Gaussian
process with zero mean, its probability density be-
ing described by the following expression:
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pé (X): G&\/ﬁ (3)

Direct determination of the probability density
(2) is not always a trivial task, and, in many cases,
obtaining an analytical expression is not possible.

The probability density

Let us consider the case where the probability
density can be obtained directly from the expres-
sion (2).

Let the distribution of the process s(t) be de-
scribed by a mixture of distributions

d X—-m d X—-m
)= ) 2 o)
G1 S G2 G2 (4)

where the coefficients d; and d, meet the condi-
tions:

d1+d2=1; d1>0,d2>0 (5)

o(x) is the probability density of a standard Gaus-
sian random variable

1
X) = e 2
Let us find the probability density of the sum of
the process (4) and Gaussian noise (3) with using
expression (2). Integral in (2) becomes
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From expression (6) we can conclude, that ob-
tained probability density is a mixture of Gaussian
distributions, and the only difference betweeen (4)

to (6) is the fact that the noise variances ag was

added to the variances of the components in (4).
Now we generalize the expression (6). Let the
probability density of a process s(t) be repre-

sented as a mixture of distributions with an unlim-
ited number of components

plx)= 3o X

/=151 Oy

: (7)

where >'d; =1, d;>0.
I=1
Then the probability density of the sum of this
process and Gaussian noise, by analogy with (6),
is defined by

p(x)= Y2 sl

¢
2 2 2 2
/=1\/Gl +GE_. \/GI +GE_, (8)

Thus, if the probability density of the process is
described by a mixture of distributions, then, using
expression (8), we can always obtain an expres-
sion for the probability density of this process with
additive Gaussian noise.

Now we consider one of the most important
case of Gaussian mixture of distribution which is
unimodal two-component Gaussian mixture. Prob-
ability density of that mixture of distribution in this
case can be obtained from (4) by letting m, and

m, be equal to zero:

d x| d X
ps (x) = 4({{-}—%(—}
O1 O1 Go Go . (9)
It is easy to obtain the mean, variance and cu-
mulant coefficients of such a mixture [5]:

m=0,62 = d1612 + dzcs%,
Y3 = 01

3
Y6 = 15{d16$ + 003 +2(dyo? +d2cs§) -

~3(d10? +dy03 ) (dhot + 03 )J / (ci0? + 03 )3 .

In purpose of illustration let the parameters of
distribution (9) be defined as:

my=m, =0,
O1 21,62 :4,

dy =0,6,dy =0,4. (1)

Fig. 1 depicts the plots of normalized probability
densities of the payload signal and the noised sig-

nal with signal-to-noise ratio (SNR = 082 /ag) val-

ues 10, 1, 0.5 and 0.1. Fig. 1 illustrates that with
decreasing SNR the distribution of the process
tends to a Gaussian distribution.

Cumulant coefficients

Let us consider the cumulant coefficients of the
process (1). Since the probability density can be
uniquely defined by infinite series of moments [6],
cumulants, and, consequently, the cumulant coeffi-
cients, knowing the cumulant coefficients allows us
to obtain probability density in cases where it is not
possible analytically, as well as estimate the prob-
ability density experimentally using momentum rep-
resentation.

The cumulants of the distribution (2) are given
by the formula [6]

u=0
: (12)

where f(u) is the characteristic function, which is
equal to

f(u) = j e"p, (x)dx
—0 . (13)
According to the properties of the characteristic
function, f:(u)can be written as

o (u) =1 (U)fé(u)’ (14)
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Fig. 1. PDFs of the payload and the noised signals:

1 — payload signal; 2 — SNR=10; 3 — SNR=1; 4 -
SNR=0,5; 5 — SNR=0,1 and the expression for the
cumulant coefficients (12) becomes

&g d*In(f; (u)f. (v))

duk u=0
K
_ d¥Inf, (u) 9 Inf, (u) _
duk duk  |lu=0
= K§ + K}

(15)

Knowing the cumulants of the distribution
ps(x) and pi(x), we can easily obtain the cumu-
lants of the process, which is a sum of signal s(t)
and noise £&(t).

The characteristic function in the case of a
normal distribution (3) of £(t) is equal to

7u2<s§
fg(u)=e 2 , (16)
and cumulants k,f, according to (12),
K% = Gg;
K =0,k =34,. (a7)

Based on the expressions (15) and (17), the
cumulants of the process (1) can be described by
formulas

K% = K5 + cg;
K =5,k =34,. (18)
The last expression indicates that the summa-
tion of process s(t) with Gaussian noise &(t)
changes only the second cumulant, and all others
remain unchanged.

If the signal-to-noise ration is given by the
equation

S

SNR="2
%

) (19)
then, according to the expression (18), the second
cumulant kf: is

¢ s[1+SNR
K2 =K2
SNR

(20)
To obtain expressions for the cumulant coeffi-
cients of the process (1) we shall use expressions
(18) and (20) and the formula for cumulant coeffi-
cients [6]
¢ k
¢ _ Kg :( SNR jZ «
Tk K ~\1+SNR

—_—
A
Ny
—_
N

k
s LS
Kk _ SNR 2 s
* G _(1+SNR] Tk
(13)?
(21)
Based on the expression (21) we can conclude
that adding Gaussian noise to the process multi-
k
SNR )2
1+SNR)

plies cumulant coefficient by value [

Detection of the signal

Now let us investigate the possibility of detec-
tion a noise-like signal with probability density (9) in
the presence of Gaussian noise as well as the pos-
sibility of reconstruction its probability density.

The algorithm of modeling of mixture of distri-
butions (4) described in detail in [7], so in this pa-
per we will not pay attention to it. As the parame-
ters of the distribution of signal (9) we will take the
parameters (11). Note that for all the examples the

length of the realization of signalis N = 10° .
In the Table 1 simulation results are presented.
For each value of SNR using expressions (10) and

(21) theoretical values variance o? and cumulant

coefficients y, and yg were obtained as well as

. . . —2 - - .
their estimations o , y, and yg with usage of
modeling of signals.

_2 — —
Using estimates o , y, and yg, and the iden-

tification algorithm proposed in [8], we can recon-
struct the probability density of the payload signal.
For this purpose expression (21) was used to re-
calculate the cumulant coefficients and the vari-
ance for each SNR value. The theoretical probabil-
ity density and the probability density of recon-
stracted signals with different SNR values are
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compared in Fig. 2. As the reconstruction error 5
we used the integral metric

5= p(p.po) = | [p(x) o (x)

where py(x) is the theoretical probability density.

Fig. 2 and Table. 2 show that if the SNR value
is greater than 0,1 (-20 dB) then reconstructed
probability density almost fully matches to the theo-
retical, only when the value of SNR is 0.1 the result
of the identification can be unsatisfactory.
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Fig. 2. PDFs of the payload and reconstructed sig-
nals:

1 — SNR=0,5; 2 — SNR=1; 3 — payload signal; 4 -
SNR=10; 5 - SNR=0,1

Table 1. Cumulant coefficients for different value of SNR

SNR 0,1 0,5 1 10 Without noise
G2 77 21 14 7,7 7
52 77,0362 20,9935 13,9917 7,7274 6,9962
Y4 0,0273 0,3673 0,8265 2,7323 3,3061
Y4 0,0328 0,3706 0,8413 2,7553 3,3284
Y6 0,0053 0,2624 0,8856 5,3227 7,0846
Y6 0,0361 0,2416 0,8617 5,6460 7,3995
Table 2. Reconstruction errors
SNR 0,1 0,5 1 10
) 0,3338 0,0399 0,0347 0,0087
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