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Identification of the probability density of the sum of the signal with 
gaussian mixture distribution and gaussian white noise 

В работе решена задача получения плот-
ности вероятностей процесса в виде суммы 
белого шума и сигнала, плотность вероятно-
стей которого описывается смесью нор-
мальных распределений. Предложен метод 
восстановления плотности вероятностей 
полезного сигнала с использованием оценок 
кумулянтных коэффициентов и алгоритма 
идентификации. 

The problem of obtaining the probability 
density of a process that is a sum of white 
noise and a signal with a Gaussian mixture dis-
tribution is solved in this paper. Using esti-
mates σ 2 , γ4  and γ6 , and the identification al-
gorithm the probability density of the payload 
signal was reconstructed. 

Keywords: Gaussian mixture of distributions, 
probability density, cumulant coefficients, white 
noise. 

Introduction 

The problem of analyzing a process comprising 
signal and noise is common in engineering practice 
and is most often encountered when solving opti-
mal signal reception tasks [1]. Here, processing of 
the received signals is typically based on the meth-
ods of mathematical statistics. A classic example of 
an optimum receiver is a receiver of known (deter-
ministic) signals in the presence of white Gaussian 
noise. 

The main difficulties arise when the signal is 
not deterministic, but stochastic, particularly if it is 
necessary not only to detect the signal, but also to 
determine its characteristics and estimate its pa-
rameters [2]. Detecting and estimating the charac-
teristics of fluctuation signals in the presence of 
noise is one of the applications. It should be noted, 
that the quality of the solution of this problem de-
pends on the correct choice of signal and noise 
models. One of the models that describe the distri-
bution of a fluctuation signal is a mixture of distribu-
tions [3], in [4], a mixture of distributions is used to 
describe the probability density of a speech signal. 

In this paper we propose a solution of the prob-
lem of obtaining the probability density of the proc-
ess that is the sum of white Gaussian noise and 
signal with a Gaussian mixture distribution, i.e. 

( ) ( ) ( )ζ = + ξt s t t , (1) 

where ( )s t  is the signal, ξ ( )t  is Gaussian white 
noise. 

Also taken into consideration cumulant coeffi-
cients of the process (1) and their usage for solving 
problems of detection and recover probability den-
sity of payload signals. 

To obtain the probability density of the process 
ξ ( )t  we mast use the convolution formula 

( ) ( ) ( )
∞

ζ ξ
−∞

= −∫ sp y p y x p x dx
, (2) 

which describes relation between probability densi-
ties of each process and sum of that processes.  

As noise ξ ( )t , we will consider a Gaussian 
process with zero mean, its probability density be-
ing described by the following expression: 

( ) ξ
−
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ξ

ξ
=
σ π
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p x e
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Direct determination of the probability density 
(2) is not always a trivial task, and, in many cases, 
obtaining an analytical expression is not possible. 

The probability density 

Let us consider the case where the probability 
density can be obtained directly from the expres-
sion (2). 

Let the distribution of the process ( )s t  be de-
scribed by a mixture of distributions 

( )    − −
= ϕ + ϕ   σ σ σ σ   

1 1 2 2

1 1 2 2
s

d x m d x m
p x

, (4) 
where the coefficients 1d  and 2d  meet the condi-
tions: 

+ = > >1 2 1 21; 0, 0d d d d , (5) 
ϕ( )x  is the probability density of a standard Gaus-
sian random variable 

( )
−
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Let us find the probability density of the sum of 
the process (4) and Gaussian noise (3) with using 
expression (2). Integral in (2) becomes 
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From expression (6) we can conclude, that ob-

tained probability density is a mixture of Gaussian 
distributions, and the only difference betweeen (4) 
to (6) is the fact that the noise variances ξσ

2  was 

added to the variances of the components in (4). 
Now we generalize the expression (6). Let the 

probability density of a process ( )s t  be repre-
sented as a mixture of distributions with an unlim-
ited number of components 

( )
∞

=

 −
= ϕ σ σ 
∑
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l l
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where 
∞

=
=∑

1
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I
d , > 0Id . 

Then the probability density of the sum of this 
process and Gaussian noise, by analogy with (6), 
is defined by 

( )
∞

= ξ ξ

 
− = ϕ  σ + σ σ + σ 

∑ 2 2 2 21
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. (8) 
Thus, if the probability density of the process is 

described by a mixture of distributions, then, using 
expression (8), we can always obtain an expres-
sion for the probability density of this process with 
additive Gaussian noise. 

Now we consider one of the most important 
case of Gaussian mixture of distribution which is 
unimodal two-component Gaussian mixture. Prob-
ability density of that mixture of distribution in this 
case can be obtained from (4) by letting 1m  and 

2m  be equal to zero: 

( )    
= ϕ + ϕ   σ σ σ σ   

1 2

1 1 2 2
s

d dx xp x
. (9) 

It is easy to obtain the mean, variance and cu-
mulant coefficients of such a mixture [5]: 
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In purpose of illustration let the parameters of 
distribution (9) be defined as: 

= =

σ = σ =

= =

1 2

1 2

1 2

0,
1, 4,
0,6, 0,4.

m m

d d  (11) 
Fig. 1 depicts the plots of normalized probability 

densities of the payload signal and the noised sig-

nal with signal-to-noise ratio ( )ξσ σ= 2 2/sSNR  val-

ues 10, 1, 0.5 and 0.1. Fig. 1 illustrates that with 
decreasing SNR the distribution of the process 
tends to a Gaussian distribution. 

Cumulant coefficients 

Let us consider the cumulant coefficients of the 
process (1). Since the probability density can be 
uniquely defined by infinite series of moments [6], 
cumulants, and, consequently, the cumulant coeffi-
cients, knowing the cumulant coefficients allows us 
to obtain probability density in cases where it is not 
possible analytically, as well as estimate the prob-
ability density experimentally using momentum rep-
resentation.  

The cumulants of the distribution (2) are given 
by the formula [6] 

( )ζζ −
 
 κ =

=  

ln
0

k
k

k k

d f u
j

udu
, (12) 

where ( )f u  is the characteristic function, which is 
equal to 

( ) ( )
∞

ζ ζ
−∞

= ∫ iuxf u e p x dx
. (13) 

According to the properties of the characteristic 
function,  ξ ( )f u can be written as 

( ) ( ) ( )ζ ξ= sf u f u f u
, (14) 
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Fig. 1. PDFs of the payload and the noised signals: 

1 – payload signal; 2 – SNR=10; 3 – SNR=1; 4 – 
SNR=0,5; 5 – SNR=0,1 and the expression for the 
cumulant coefficients (12) becomes 
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 (15) 
Knowing the cumulants of the distribution 

( )sp x  and ξ ( )p x , we can easily obtain the cumu-

lants of the process, which is a sum of signal ( )s t  
and noise ξ ( )t . 

The characteristic function in the case of a 
normal distribution (3) of ξ ( )t  is equal to 

( )
ξσ−

ξ =

2 2

2
u

f u e
, (16) 

and cumulants ξ
kk , according to (12),  

ξ
ξ

ξ

κ = σ

κ = =

2
2 ;

0, 3,4,...k k
 (17) 

Based on the expressions (15) and (17), the 
cumulants of the process (1) can be described by 
formulas 

ζ
ξ

ζ

κ = κ + σ

κ = κ =

2
22 ;
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s

s
kk k

 (18) 
The last expression indicates that the summa-

tion of process ( )s t  with Gaussian noise ξ ( )t  
changes only the second cumulant, and all others 
remain unchanged. 

If the signal-to-noise ration is given by the 
equation 

ξ

κ
=
σ

2
2

s
SNR

, (19) 
then, according to the expression (18), the second 
cumulant ξ

kk  is 

ζ + κ = κ  
 

22
1s SNR

SNR . (20) 
To obtain expressions for the cumulant coeffi-

cients of the process (1) we shall use expressions 
(18) and (20) and the formula for cumulant coeffi-
cients [6] 
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Based on the expression (21) we can conclude 

that adding Gaussian noise to the process multi-

plies cumulant coefficient by value  
 + 

2

1

k
SNR

SNR
. 

Detection of the signal 

Now let us investigate the possibility of detec-
tion a noise-like signal with probability density (9) in 
the presence of Gaussian noise as well as the pos-
sibility of reconstruction its  probability density. 

The algorithm of modeling of mixture of distri-
butions (4) described in detail in [7], so in this pa-
per we will not pay attention to it. As the parame-
ters of the distribution of signal (9) we will take the 
parameters (11). Note that for all the examples the 
length of the realization of signal is = 610N . 

In the Table 1 simulation results are presented. 
For each value of SNR using expressions (10) and 
(21) theoretical values variance σ 2  and  cumulant 
coefficients γ4  and γ6  were obtained as well as 

their estimations σ
2

, γ 4  and γ 6  with usage of 
modeling of signals. 

Using estimates σ
2

, γ 4  and γ 6 , and the iden-
tification algorithm proposed in [8], we can recon-
struct  the probability density of the payload signal. 
For this purpose expression (21) was used to re-
calculate the cumulant coefficients and the vari-
ance for each SNR value. The theoretical probabil-
ity density and the probability density of recon-
stracted signals with different SNR values are 
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compared in Fig. 2. As the reconstruction error δ  
we used the integral metric 

( ) ( ) ( )
∞

−∞

δ = ρ = −∫0 0,p p p x p x dx
, 

where 0( )p x  is the theoretical probability density. 
Fig. 2 and Table. 2 show that if the SNR value 

is greater than 0,1 (-20 dB) then reconstructed 
probability density almost fully matches to the theo-
retical, only when the value of SNR is 0.1 the result 
of the identification can be unsatisfactory. 

 
Fig. 2. PDFs of the payload and reconstructed sig-
nals: 

1 – SNR=0,5; 2 – SNR=1; 3 – payload signal; 4 – 
SNR=10; 5 – SNR=0,1 

 
Table 1. Cumulant coefficients for different value of SNR 

SNR 0,1 0,5 1 10 Without noise 

σ2
 77 21 14 7,7 7 

σ2
 77,0362 20,9935 13,9917 7,7274 6,9962 

γ4  0,0273 0,3673 0,8265 2,7323 3,3061 
γ4  0,0328 0,3706 0,8413 2,7553 3,3284 
γ6  0,0053 0,2624 0,8856 5,3227 7,0846 
γ6  0,0361 0,2416 0,8617 5,6460 7,3995 

 
Table 2. Reconstruction errors 

SNR 0,1 0,5 1 10 
δ  0,3338 0,0399 0,0347 0,0087 

 

Conclusion 

In this paper a general analytical expression for 
the probability density of a process that comprises 
a sum of a signal and noise, where the signal’s dis-
tribution is a mixture of distributions, and the noise 
is a Gaussian process, was obtained. 

Analysis of cumulant coefficients of the process 
demonstrated that the cumulant coefficients of the 
process (1) and the cumulant coefficients of the 

payload signal differ by value  
 + 

2

1

k
SNR

SNR
. This 

fact allows us to solve the problem of detecting a 
payload signal in the presence of Gaussian noise 
and to identify its probability density with a mixture 
of distributions. 

The possibility of detecting the payload signal 
and acquiring its characteristics for different signal-
to-noise ratios was demonstrated with numerical 
modeling. 
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