Методы и средства обработки сигналов и изображений

УДК 616.12

О.В. Борисов, канд. техн. наук, П.Г. Молюков, В.О. Фесечко, канд. техн. наук, Є.В. Хитрик

Модифікований метод анізотропної фільтрації ультразвукових зображень зі спектром

Для обробки медичних ультразвукових зображень зі спеклом вдосконалено метод фільтрації і отримано відповідний алгоритм реставрації. Поєднано теоретичні основи анізотропної дифузії для збереження дрібносудинних стрктур і відомий підхід до знешумлення акустичних зображень. Використовували адитивно-мультиплікативну модель спекл-шума.

For the medical ultrasonic images processing with a speckle the method of filtration is improved and the proper algorithm of restoration is developed. Theoretical bases of anisotropic diffusion for the maintainance of shallow-vessel structures and the well-known approach for the noise erasing are combined. An additivemultiplicative model of speckle-noise is used.

Вступ

Когерентна природа ультразвука призводить до спотворення отримуваних зображень спеклшумом внаслідок взаємодії скануючого променя із шорсткуватими границями і дифузними розсіювачами біологічних середовищ, що утруднює інтерпритацію отримуваних акустичних зображень навіть для досвідчених клініцистів. Крім того, ускладнюється завдання сегментації зображень.

Спільною проблемою численних розроблених методів усунення спекл-шуму (статистичні, адаптивні, гамма-фільтри, фільтри на вейвлетах) є високий ризик "стирання" або значного "розмивання" дрібних структур (наприклад, судин) і граничних областей на зображенні, які представляють для клініциста першочергове діагностичне значення. Це відбувається внаслідок того, що очищуючий фільтр ідентифікує дрібні структури зображення як шум.

Метою роботи є розробка такого алгоритму фільтрації, при якому дрібноструктурні елементи і границі на зображенні будуть зберігатися, а їх контраст підсилюватися. Це значно підвищить діагностичну цінність отримуваних зображень і знизить ризик їх помилкового трактування. Спершу розглядається математична модель анізотропної дифузії Перона-Маліка і виконується її адаптація під прийняту в даній роботі адитивномультиплікативну модель спекл-шуму. Далі описується розроблений алгоритм фільтрації і його параметри. В кінці роботи представлені результати обробки алгоритмом синтезованих зображень і зазначаються кількісні зміни відношення сигнал/шум для цих зображень до і після фільтрації.

Основна частина

Спекл-шум, як відомо, в окремих випадках описується релеєвським законом розподілу. Проте зображення, отримані за допомогою ехоімпульсної ультразвукової системи мають різноманітні особливості. Однією з них є попереднє логарифмічне стиснення сигналів. Аналітичні дослідження логарифмічно стиснутих релеєвських сигналів показали, що лінійний зв'язок між математичним сподіванням і середньоквадратичним відхиленням неприпустимий для випадку ультразвукових зображень. Експериментальні дослідження виявили, що ультразвукові зображення зі спеклом можуть бути промодельовані в наступний спосіб:

$$u_0 = u + u^{1/2} n \,, \tag{1}$$

де *и* означає інтенсивність оригінального сигналу; u_0 – інтенсивність спостережуваного (зашумленого) сигналу; n – гаусівська змінна з нульовим середнім знченням і середньоквадратичним відхиленням σ_n .

В рамках даної роботи ми використовуємо рівняння (1) як модель для опису спекл-шуму в ультразвуковому зображенні.

Запишемо рівняння анізотропної дифузії:

$$\begin{cases} u(x,0) = u_0 \\ \frac{\partial u}{\partial t} = \operatorname{div}(F) + \beta(u_0 - u) \end{cases}$$
(2)

де *F*- дифузний потік; β – коефіцієнт прикріплення даних; $\beta(u_0 - u)$ – член прикріплених даних.

При *β* = 0 маємо випадок анізотропної дифузії, де використовується дифузна матриця *D* і потік

$$F = D \operatorname{grad}(u).$$

Матриця *D* може бути записана в діагональній формі з власними векторами (v_0 , v_1 , v_2) і власними значеннями λ_0 , λ_1 , λ_2 . Отже потік можна записати як

$$F = D \text{grad}(u) = \sum_{i=0}^{2} \lambda_i u_{vi} v_i,$$

де $u_{vi} = \text{grad}(u)\mathbf{v}_i$ – перша похідна інтенсивності у напрямку вектора \mathbf{v}_i .

Ми використовуємо потік **F**, розкладений по базису напрямку градієнта (**v**₀) і напрямків максимального (**v**₁) і мінімального (**v**₂) викривлення границі на зображенні, які визначаються із згладжуваного зображення u^{*} , причому процес згладжування реалізується через згортку з гауссіаном із середньоквадратичним відхиленням σ . Напрямки головних викривлень обчислюються як два власні вектори матриці $PH_{\sigma}P$, де H_{σ} – матриця Гесса для зображення u^{*} ; P – ортогональна проекція матриці на напрямок градієнта, тобто

$$H' = PH_{\sigma}P$$

$$P = I - (\operatorname{grad}(u^{*}) / |\operatorname{grad}(u^{*})|) \times I$$

x $(\operatorname{grad}(u^{*}) / | \operatorname{grad}(u^{*})|)^{t}$,

де І – ідентична тривимірна матриця.

Власні значення дифузної матриці вибираються як функції перших похідних інтенсивності у напрямках відповідних власних векторів і можуть бути записані як

$$\lambda_i(u_{\mathbf{v}i}) = u_{\mathbf{v}i} \cdot g_i (u_{\mathbf{v}i}).$$

Дифузія у напрямку градієнта задається дифузною функцією Перона – Маліка, тобто

$$g_0(x) = \exp(-x^2/\delta^2),$$

де δ – поріг спрацьовування на похідну інтенсивності у напрямку згладжуючого градієнта, а 0 < g1 < g2 ≤ 1 спрямовують дифузію в напрямках головних (мінімального і максимального) викривленнь.

Вперше член прикріплених даних β(u₀ – u) в (2) був запроваджений Нордстромом [1], який запропонував об'єднати різноманітні методи енергетичної мінімізації [2, 3] з рівнянням анізотропної дифузії Перона – Маліка. Цей член забезпечує збіжність алгоритму реставрації до зображення, вельми близького до оригіналу, крім того, він забезпечує більш стабільну роботу алгоритму.

Коефіцієнт прикріплення даних β може бути оптимально оцінений виходячи із зображення у випадку гаусівського шуму з нульовим середнім значенням і відомим середньоквадратичним відхиленням σ_n [4]. Якщо σ_n апріорі невідоме, воно може бути оцінене із вихідного зображення методом виділення зони інтересу, що містить однорідні структури і оцінки середньоквадратичного відхилення в цій області.

Ми використовуємо рівняння (1) як модель спекл-шуму, де нам відоме середньоквадратичне відхилення σ_n гаусівського шуму n. При адаптації роботи Рудіна та ін.[4] до цієї моделі, обмеження процесу реставрації набуває вигляду:

$$E_1(u) = \frac{1}{|\Omega|} \int_{\Omega} \frac{(u - u_0)^2}{u} d\Omega = \sigma_n^2$$
(3)

а градієнт відхилення задається як

$$gradE_1(u) = \frac{u^2 - u_0^2}{u^2}$$

що дає

$$\frac{\partial u}{\partial t} = div(F) - \lambda(t) \frac{u^2 - u_0^2}{u^2}$$
(4)

в середині області Ω і $\frac{\partial u}{\partial n} = 0$

на границі області $\Omega = \partial \Omega$.

Для обчислення $\lambda(t)$ помножимо рівняння (4)

на $\frac{u-u_0}{u+u_0}u$ і проінтегруємо по Ω. Коли буде до-

сягнуто стійкого значення, ліва частина (4) стане нульовою і ми отримаємо

$$\lambda(t) = \frac{1}{\sigma_n^2 |\Omega|} \int_{\Omega} \frac{u - u_0}{u + u_0} u \cdot div(F) d\Omega .$$
 (5)

Для зменшення часу обчислення і поліпшення стабільності, ми використовуємо стаціонарну ітеративну схему розв'язку рівнянь часткових похідних. В інших роботах використовуються адаптовані обчислювальні схеми, запропоновані Вейкертом [5, 6], або метод спряженого градієнту [7]. Зображення з *N* точок (пікселей або вокселей), представляється у вигляді вектора R^{*N*}, що позначається через **u**. Рівняння дифузії (4) записуються у формі

$$\frac{\partial}{\partial t}u = A u - b,$$

де A – матриця N $\times\,$ N; b – вектор R $^{N},$ що залежить від вихідних даних $u_{0}.$

Нам необхідно знайти фіксовану точку, що відповідає рівнянню

A u = b.

Для цього можна скористатися методом Джакобі або Гауса-Зейделя. Описаний нижче алгоритм підходить для обох схем, єдина різниця полягає у тому, будемо ми використовувати два зображення u^k і u^{k+1} у випадку методу Джакобі, чи одне й те саме зображення для поточної і наступної ітерацій у випадку методу Гауса-Зейделя.

Дискретизація оператора дивергенції запишеться таким чином:

$$div(F) = R \ u_{0,0,0} + S, \tag{6}$$

де
$$R = -\sum_{n=0}^{2} (\alpha_n^+ + \alpha_n^-);$$
 (7)

$$S = \sum_{n=0}^{2} \left[\alpha_{n}^{+} u(x + dx_{n}) + \alpha_{n}^{-} u(x - dx_{n}) + \gamma_{n}^{+} + \gamma_{n}^{-} \right]$$
(8)

$$\alpha_n = \sum_{i=0}^2 g_i(u_{v_i})(v_{i_n})^2 ; \qquad (9)$$

$$\gamma_n = \sum_{i=0}^2 (u_y v_{i1} + u_z v_{i2}) g_i(u_{v_i}) v_{in}$$

 $\alpha_n^{\pm} = \alpha_n (x \pm dx_0 / 2)$ (те ж саме для γ_n^{\pm}); $n \in \{0, 1, 2\}$.

Загальна схема

Маємо наступну ітеративну схему, що бере початок від $u^{o} = u_{o}$:

$$R(u^k) \ u^{k+1} + S(u^k) - \lambda^k f(u^{k+1}, u_0) = 0$$
(10)

У випадку спекл-шуму $f(x, y) = (x^2 - y^2)/x^2$, а u^{k+1} являеє собою дійсний розв'зок поліному третього порядку (R < 0 оскільки $\alpha_i^{\pm} > 0$):

$$X^{3} + \frac{(S(u^{k}) - \lambda^{k})}{R(u^{k})}X^{2} + \frac{\lambda^{k}u_{0}^{2}}{R(u^{k})} = 0$$
(11)

Це рівняння має тільки один дійсний строго позитивний розвязок, оскільки останній член поліному є строго негативною константою. Розв'язання цього рівняння замість використання *f*(*u^k*, *u*₀) у виразі (10) значно покращить стабільність обчислювальної схеми.

Головний алгоритм

begin

$$\begin{aligned} \forall (x, y), \ \alpha_0^- &= \alpha_1^-(x) = \alpha_2^-(x, y) = 0 . \\ \forall (x, y), \ \gamma_0^- &= \gamma_1^-(x) = \gamma_2^-(x, y) = 0 . \\ S_\lambda &= 0. \end{aligned}$$

Обчислити згладжуване зображення $u_{\sigma}^{k} = (u^{k})^{*} G_{\sigma}$. for **x** = (*x*, *y*, *z*) $\in \Omega$

for $n \in \{0, 1, 2\}$ для координати x + dx_n/2:

Обчислити градієнт поточного зображення $grad(u^k)$.

Обчислити grad (u_{σ}^{k}) і матрицю Гесса $H(u_{\sigma}^{k})$ для u_{σ}^{k} .

Обчислити напрямки головних викривлень з grad(u_{σ}^{k}) і $H(u_{\sigma}^{k})$.

Прийняти (v_i)*i* ∈ {0,1,2} за напрямки градієнта і головних викривлень.

Обчислити γ_n^+ і α_n^+ використовуючи (10).

end for

Обчислити *R* і *S* використовуючи (7) і (8).

Прийняти *u*^{*k*+1}(x) за дійсний строго позитивний розв'язок рівняння (11).

Відновити інтеграл з рівняння (5) використовуючи вираз (6).

$$S_{\lambda} = S_{\lambda} + (Ru^{k} + S)\frac{u^{k} - u_{0}}{u^{k} + u_{0}} \cdot u^{k} .$$

$$\alpha_{0}^{-} = \alpha_{0}^{+}; \ \alpha_{1}^{-}(x) = \alpha_{1}^{+}; \ \alpha_{2}^{-}(x, y) = \alpha_{2}^{+}(x, y) .$$

$$\gamma_{0}^{-} = \gamma_{0}^{+}; \ \gamma_{1}^{-}(x) = \gamma_{1}^{+}; \ \gamma_{2}^{-}(x, y) = \gamma_{2}^{+}(x, y) .$$

end for

$$\lambda_{k+1} = \frac{S_{\lambda}}{\sigma_n^2 \left|\Omega\right|}.$$

end

Параметрами алгоритму є: *о*, *б*, *g*₁, *g*₂, число ітерацій, тип шуму (гаусівський або спекл), середньоквадратичне відхилення шуму *о*_n.

Експеримент і результати

Для експерименту було взято синтетичне зображення, що імітує Y-подібне розгалудження судини. Головна судина радіусом 4 вокселя розгалуджується на дві гілки, що утворюють кут 90 градусів і мають радіуси 2 і 3 вокселі. Для імітації особливостей ультразвукового зображення, інтенсивності зображення судин і фону були взяті у пропорції 2:1. Потім виконали згортку зображення з гаусівським ядром із середньоквадратичним відхиленням 0,7 з метою симуляції часткового об'ємного ефекту і почергово додали до результату мультиплікативний шум відповідно до моделі (1) із середньоквадратичним відхиленням 1 і 2, як показано на рис. 1. Ми використали наступне визначення відношення сигнал/шум:

$$SNR(I_b, I_r) = 10\log_{10} \frac{\operatorname{var}(I_r)}{\operatorname{var}(I_b - I_r)}$$

де *I_r* - інтенсивність реконструйованого зображення; *I_b* – інтенсивність незашумленого початкового зображення; var(*I*) означає варіації інтенсивності на зображенні *I*.

Відношення *SNR* поліпшилося від 1 до 9,8 для зображення, спотвореного шумом із середньоквадратичним відхиленням 1 і від 0,3 до 7,1 для зображення, спотвореного шумом із середньоквадратичним відхиленням 2. В експерименті використано наступні параметри: $\sigma = 0,8, \delta = 2, g_1 = 0,1, g_2 = 0,5, 40$ ітерацій, спекл-шум, $\sigma_n = 1$ для першого зашумленого зображення; те ж саме і $\delta = 3, \sigma_n = 2$ для другого зашумленого зображення.

Рис. 1. Результати експерименту із синтезованим зображенням: а – початкове незашумлене зображення; б – початкове зображення з додаванням шуму $\sigma_n = 1$; в – результат фільтрації зображення б; г - початкове зображення з додаванням шуму $\sigma_n = 2$; д – результат фільтрації зображення г

Висновки

В роботі описано новий алгоритм реставрації акустичного зображення, що базується на використанні моделі спекл-шуму (1). Алгоритм поєднує в собі метод анізотропної дифузії, спеціально розроблений для збереження і підсилення дрібносудинних структур [7] і метод фільтрації [4], що першочергово був запропонований для випадку гаусівського шуму і адаптований в даній роботі під модель і характеристики спекл-шуму шляхом введення обмеження (3). Представлені на рис. 1 результати експерименту і наведені вище кількісні зміни відношення сигнал/шум свідчать про успішність процесу знешумлення зображення і підвищення контрасту дрібносудинних структур на загальному фоні. У порівнянні з відомими методами реставрації (усереднюючі і адаптивні фільтри; статистичні фільтри Куана, Лі; гамма-фільтр; фільтри на вейвлетах), запропонований алгоритм в більшій мірі підвищує діагностичну цінність акустичних зображень і знижує ймовірність постановки невірного діагнозу пацієнта. В якості перспективи можна відмітити інтеграцію отриманого фільтру в структуру алгоритмів для попередньої обробки даних перед автоматичною сегментацією зображень.

Література

- N. Nordstrom. Biased anisotropic diffusion A unifed regularization and diffusion approach to edge detection. Image Vision Comput., 8(4):318-327, 1990.
- 2. *S. Geman and D. Geman.* Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restauration of Images. *IEEE Trans.* PAMI, 6:721-741, 1984.
- D. Mumford and J. Shah. Boundary detection by minimizing functionals. In CVPR, pages 22-26, San Francisco, June 1985. IEEE Comp. Society Press.
- 4. *L. Rudin*, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. *Physica D*, 60:259-268, 1992.
- J. Weickert. Recursive separable schemes for nonlinear diffusion filters. In B. ter Haar Romeny, L. Florack, J. Koenderink, and M. Viergever, editors, Scale-Space Theory in Computer Vision (Scale-Space), volume 1252 of Lecture Notes in Computer Science, pages 260-271, Utrecht, July 1997. Springer Verlag.
- 6. J. Weickert. Anisotropic Diffusion in image processing. Teubner-Verlag, 1998.
- K. Krissian. A New Variational Image Restoration Applied to 3D Angiographies. In IEEE W. on Var. and Level Set Meth. in Comp. Vision, pages 65-72, July 2001.