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Investigation of electrical brain activity related to movement: a review 

The work is devoted to consideration of differ-

ent problems which arise in studying of the move-

ment-related brain activity. Changes in the cortex 

activity during performing of the movement both 

real and imagery represent neural networks formed 

for planning and performing of the particular mo-

tion.  

The review of possible preprocessing methods 

of the registered brain activity for increasing signifi-

cance of extracted features are shown. Regularities 

and patterns which take place before and after 

movement onset are described. The methods that 

suitable for connectivity estimations in case of cor-

tico-muscular relationships and in case of evalua-

tions between brain regions are shown.  In addi-

tion, possibility of movement classification and pre-

diction together with reconstruction of kinematics 

features of the motion are considered.  
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Introduction 

In the study of real movements first of all the 

relationship between the cortex activity and the 

electrical activity of the muscles responsible for the 

execution of certain movements is under consider-

ation. In addition, relationships arising in the brain 

during the planning and execution of a movement 

that reflects the functional connections in the brain 

is also important. Many studies are focused on de-

veloping brain-computer interface (BCI) related to 

the imaging or execution of movements. 

Brain activity can be recorded by using of elec-

troencephalography (EEG), magnetoencephalog-

raphy (MEG) and electrocorticography (ECoG). 

EEG is the most common method due to it is non-

invasive compared to ECoG and simpler compared 

to EMG.  

Muscle activity is recorded by using of electro-

myography (EMG). 

The same brain areas are activated during im-

agination and the real action. In particular these are 

the parts of the neural system which are associated 

with preparing and commanding of movements: the 

premotor cortex, the dorsolateral prefrontal cortex, 

the inferior frontal cortex, the posterior parietal cor-

tex, the cerebellum and the basal ganglia. The ac-

tivation of the motor cortex (M1) during imaginary 

movements is still unclear because some studies 

found neural activation and others not [20]. PET 

and fMRI indicate involvement of the sensorimotor 

cortices in addition to other cortical regions during 

tasks that trigger dystonia [9]. It is making im-

portant the investigation of movement-related brain 

activity for studying different movement disorders 

and dysfunctions. 

In fact, motor activity, both actual and imagined 

as well as somatosensory stimulation, modulates 

the μ-rhythm (8 – 13 Hz) [23]. The M1 cannot initi-

ate a movement alone, but needs to be stimulated 

by neurons from the premotor cortex and the sup-

plementary motor area (SMA), which support and 

coordinate the M1. One task of the premotor cortex 

is to provide sensory guidance of movement while 

the SMA is, among others, responsible for planning 

and coordination of more complex movements [20]. 

The networks engaged in the early “volitional” part 

of the task are widespread in many structures of 

the brain [10]. 

The motor cortex displays synchronized rhyth-

mic activity modulated by motor behavior [7]. The 

main phenomena observed on brain activity during 

movement execution is event-related desynchroni-

zation (ERD). ERD is caused also by imagined 

movements and by intended movements [23]. 

The aim of this work are review of different 

branches of the movement-related brain activity in-

vestigation and definition of further research direc-

tions. 

Data pre-processing 

Data pre-processing is important for the further 

analysis of the recorded signals. In all cases band-

pass filtering is the main step of pre-processing.  

If the research is aimed to investigate the rela-

tionship between brain and muscle activities, the 

question arises of the need for EMG processing. 

For this purpose rectification is commonly used. 
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Rectification of the EMG signal enhances firing rate 

information [19]. But at the same time EMG rectifi-

cation had inconsistent effects on the power and 

coherence spectra and obscured the detection of 

cortico-muscular coherence (CMC) in some cases. 

That’s why rectification is inappropriate [15]. 

One of the main challenges that is imminent in 

EEG processing is that the EEG signals are very 

noisy, having low signal to noise ratio and large tri-

al to trial variability [24]. The other problem that 

complicates investigations is a volume conduction.  

Described below the processing examples can 

be used not only for EEG but also for MEG and 

ECoG to improve extraction of brain activity fea-

tures. 

In [1, 22] smoothing with a Savitzky-Golay filter 

was used for the low-pass filtering of ECoG. In [2] 

auto-correlation of the EEG signals was performed 

to enhance the weak brain signals and reduce 

noise.  

The purpose of the spatial filter is to reduce the 

effect of spatial blurring from the raw signal. The 

most common spatial filters are small and large 

Laplacian, bipolar, common average referenced 

(CAR) and current source density (CSD). 

The large Laplacian and CAR references are 

most suited for a BCI instead of the small Laplacian 

and ear reference. CAR (the mean of all electrodes 

as reference) show the best performance in case of 

imagery classification [26]. 

CSD (Laplacian based) is a spatial filtering 

technique reducing the redundancy and ambiguity 

of volume conduction measures in EEG, which 

used to work on reference free data. The use of a 

CSD greatly improved CMC [17].  

CSP (common spatial pattern) is more complex 

method for spatial filtering based on a decomposi-

tion of the raw EEG signals into spatial patterns, 

which are extracted from two populations of EEG 

[23, 26]. CSP filters maximize the variance of the 

signal under one condition and minimize it for the 

other condition. In [14] discriminative spatial pattern 

(DSP) filtering was proposed to extract the ampli-

tude features of slow potentials of the ICs (0.1-4 

Hz) instead CSP. 

In [12] the use of optimal spatial filters (OSF) 

was evaluated in case of analysis of ERD and 

movement related cortical potentials (MRCP). 

The other important group of pre-processing 

methods includes different decomposition tech-

niques. For further analysis can be used the enve-

lope of the signals calculated by Hilbert transform, 

the fitted curves calculated using the sigmoid fitting 

function [10] or the time–frequency (TF) represen-

tations of single-trial EEG signals calculated using 

the complex Morlet’s wavelet [12, 27]. 

Independent component analysis (ICA) can de-

compose the overlapping source activities consti-

tuting the scalp EEG into functionally specific com-

ponents. ICA can be performed to identify and re-

move artifacts associated with eye-blinks and mus-

cle activation [9, 14]. 

For noise removing from the EEG empirical 

mode decomposition (EMD) can be used. It de-

composes a signal into harmonics of various fre-

quencies. EMD is a data dependent decomposition 

method without assumptions about the stationarity 

[24].  

Principal Component Analysis (PCA) is used 

for dimensionality reduction of EEG signals or ex-

tracting features. In [26] the PCA is applied to the 

training set to find the transformation matrix for cal-

culation of the final features.  

Cortico-muscular connectivity 

Coherence and phase synchronization are the 

most common methods for estimation interdepend-

encies between two signals, which were used for 

investigation the coupling between both EEG/EMG 

and EEG/EEG during different tasks. In [21] partial 

coherence was used instead of ordinary coherence 

to solve reference problem, in [25] Regression-

CMC method was used for study EEG and EMG 

relationship.  

Long-range task-related coupling between pri-

mary motor cortex (PMC) and multiple brain re-

gions was found in the same frequency band [7]. 

The contralateral motor cortex drives muscle dis-

charge in the beta (15-30 Hz) and Piper (30-60 Hz) 

bands. Coherence between cortex and muscle in 

the beta band is found during weak or moderate 

isometric contractions. CMC in the Piper band is 

evident during strong isometric contractions or dur-

ing movements [3]. 

Cortico-muscular coherence is diminished dur-

ing a movement and appears predominantly during 

periods of isometric contraction following the 

movement. CMC was present in the beta band dur-

ing sustained contractions but vanished before 

movement onset, being replaced by transient syn-

chronization in the alpha and gamma bands during 

dynamic force output [16]. CMC features have task, 

attention and age related modulations. The coher-

ence is smaller during a compliant condition.  

In acute stroke CMC frequency decreases on 

the affected side and CMC amplitude increases on 

the unaffected side. In the chronic period there was 

no inter-hemispheric difference in CMC parame-

ters. The changes in CMC parameters in acute 

stroke could result from a decrease in inhibition 

[25]. 
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EEGs over the contralateral sensorimotor cor-

tex is coherent with EMG (mean frequency: 19 Hz, 

mean value: 0.12). The time lag from cortex to 

muscle, computed by “constant phase shift plus 

constant time lag model”, in 14-50 Hz was 14 ms 

[17].  

In [4] the delay between MEG and EMG signals 

was estimated from mutual phase relationships by 

using of synchronization index approach. Sources 

were found in the primary motor cortex (M1) con-

tralateral to the contracted muscle. Significant co-

herence between EMG and M1 activity was seen in 

the 20 Hz frequency range. 

 

Figure 1. Time-frequency representation of CMC dur-

ing exerting isometric force against the load cell [16] 

Cortico-muscular synchronization from MEG 

and EMG in the beta band was found to be of par-

ticular importance in establishing bimanual move-

ment patterns in the context of polyrhythmic iso-

metric task [6].  

In [18] the directed transfer function (DTF) was 

proposed for investigation of coupling between 

brain and muscles. DTF is useful in analyzing a re-

ciprocally-connected system. Directional infor-

mation flow from EEG to EMG reflects the motor 

control command. The finding of the directional in-

formation flow from EEG to EMG within the gamma 

band indicates that 40 Hz coherence is not specific 

to the muscle Piper rhythm which is seen only with 

strong contraction. Directional information flow 

computed from EEG to EMG was significant in the 

higher beta band (19-30 Hz). 

 

Figure 2. Rayleigh statistics of the phase-locking be-

tween M1 right and EMG left [6] 

Movement-related brain activity 

The largest, significant power decreases be-

tween pre and post unimanual conditions were 

found in the M1s opposite to the moving finger in 

all frequency bands. The largest, significant power 

increases were found in the cerebellar hemi-

spheres [6]. The power spectrum of the activity in 

M1 during motor control shows a significant in-

crease in the 3-5 Hz band compared with the rest 

condition [7]. A decrease in relative spectral power 

more prominent from 6 to 30 Hz, starting ~500 ms 

before movement onset, and an increase in spec-

tral power in the range of 50-100 Hz, starting ap-

proximately 200 ms before movement onset [1].   

In [7] using MEG and finger muscle recordings, 

the central origin of the peripheral ~8 Hz oscilla-

tions was revealed by showing that they were gen-

erated by an oscillatory network formed by the con-

tralateral M1, the premotor cortex, the contralateral 

thalamus, and the ipsilateral cerebellum. 

The planning and execution of movement leads 

to changes in the alpha and beta frequency bands, 

known as event-related desynchronization [27]. 

The main pattern, which occur in association 

with both real and imaginary voluntary movements 

is movement related cortical potential - MRCP. Its 

magnitude and latency are influenced by move-

ment-related parameters [5]. 

MRCPs can be divided into 2 main compo-

nents: a) the slow cortical potentials (SCPs) occur-

ring during intention or anticipation of an upcoming 

movement and b) the motor potential (MP) occur-

ring during the execution itself. The SCP is also 

known as the Bereitschaftspotential (BP) and has 

two phases: early - slow increase in negativity, and 

late - steeper slope [20]. The rebound after the 

peak of maximum negativity in MRCP has been 

associated with the precision of the movement [8]. 

Electro-cortical activity recorded during the 

preparation of the bimanually incompatible actions 

included a central positivity that began approxi-

mately 2.5 s before movement onset and was lo-

calized in medial frontal areas. Negative activity in 

the supplementary motor area takes place 700 ms 

before movement onset and a frontal lateral positiv-

ity emerged 1.8 s before the initiation of bimanual 

drawing task that was localized in the dorsolateral 

prefrontal cortex. All components are bilateral [13]. 

In [10] intracerebral electrodes during self-

paced clenching movements of the hand were ana-

lyzed and two groups of signals were found: with 

EBS (Baseline shifts) and without. The onsets of 

EBSs were from 1.6 to 3.2 sec. 82 % of the EBSs 

started in various distant brain structures at the 

same time. The simultaneous EBS onsets suggest 
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significantly higher functional coupling of some 

brain areas. 

Connectivity between brain regions 

Diverse neural networks with different 

resonance-like frequencies exist in the brain. In 

[21] premovement increase of coherence was 

shown between the SMA proper and S1-M1 at the 

frequency of 0–33 Hz and between the pre-SMA 

and S1-M1 at 0–18 Hz. Coherence between the 

SMA proper and M1 started to increase 0.9 sec 

before the movement onset and peaked 0.3 sec 

after the movement. 

Coupling between the primary sensorimotor 

cortices in the beta frequency band was reduced 

with increasing movement speed. An increase of 

coherence was observed in the active as compared 

to the resting state. 

In [11] directed coherence (from the dominant 

to the nondominant hemisphere) between C3 and 

C4 derivations was calculated. At rest, EEG-EEG 

directed coherence in the alpha frequency (0.05–

0.23) was larger than in the beta frequency band 

(0.04–0.11). Coherence in the alpha frequency 

band decreased during bilateral compared with 

unilateral task. Statistical effects of force and 

condition (unilateral or bilateral) on normalized 

directed coherence from the dominant to the 

nondominant hemisphere were found in the alpha 

band. EEG-EEG coherence from the nondominant 

to the dominant hemisphere showed an effect of 

force but not condition. 

In [9] coherence changes were investigated in 

individuals with arm dystonia. Ipsilesional 

sensorimotor cortical activation in the 8–12 Hz 

range is abnormally reduced in patients and 

correlates with weakness of the more affected 

wrist. Coherence at the rest was significantly lower 

in patients than controls.  

Movement classification and prediction 

Wavelet coefficients, power spectral density 

and average power, wavelet packet along with 

Fourier transform, wavelet packet entropy of EEG 

data can be used as features for classification [2]. 

In addition, statistical differences in ERD and 

MRCP correlates between different types of 

movements allow to use them for distinguishing be-

tween different motor tasks [12].  

In [2] the EEG signals are decomposed into 

several bands of real and imaginary coefficients 

using dual-tree complex wavelet transform 

(DTCWT). The energy of the coefficients from rele-

vant bands have been extracted as features.  

In [8] a technique for discriminating between 

different levels of force and speed has been pro-

posed by using the marginal distribution of opti-

mized wavelets. Six temporal features were used 

from the initial negative phase of the MRCP until 

the point of detection to predict which of the four 

tasks the subjects intended to do.  

In case of few electrodes are available, adap-

tive autoregressive filtering or finite impulse re-

sponse multilayer perceptrons can be used as 

classifiers [23].  

Among different types of classifiers developed 

K-nearest neighbor classifier has been shown to 

provide a good mean accuracy of ~91 % which is 

better than several existing techniques for imagery 

movements with using of energy of the DTCWT 

coefficients as features [2].  

In [8] the temporal features, extracted from the 

movement intention, were classified with an opti-

mized support vector machine. The system detect-

ed 81% of the movements and correctly classified 

75±9% and 80±10% of these at the point of detec-

tion when varying the force and speed, respective-

ly. The movements were detected 317 ±73 ms be-

fore the movement onset.  

In [5] the single-trial EEG traces were classified 

with a pattern recognition approach based on 

wavelet coefficients as features and support vector 

machine as classifier. The movements of right foot 

with two different contraction torques and two rates 

of torque were classified with misclassification less 

than 30 %. 

Movement kinematics from brain activity 

Brain activity has been shown to correlate 

strongly with movement velocity independent of 

movement direction and coordination. Yet how 

neural oscillations might be related to limb speed 

control is still poorly understood [7]. 

Activity before movement onset from PMC rec-

orded by ECoG from the region showing hand mo-

tor responses carries most directional information 

[1].  

In [27] was demonstrated by using a single lin-

ear equation, that the parameters of the clenching 

speed as well as the hand are simultaneously em-

bedded in the multi-channel EEG modulations as-

sociated with movement. 

In [22] trajectories of 2D hand position was 

predicted from the ECoG data. The prediction per-

formance for the random signals with the same au-

to-correlation as the ECoG signals is ~0, so corre-

lations between real and predicted trajectories ob-

tained from the ECoG really stem from informa-

tional content in the ECoG rather than from general 

signal properties. The ECoG signals are correlated 
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to several movement parameters, including posi-

tion, velocity and acceleration. 

Most of the hand velocity energy during move-

ments investigated in [7] was concentrated in the 

low-frequency range (<5 Hz). Hand speed is co-

herent with the activity of the contralateral primary 

motor and sensory areas in the 2-5 Hz range, with 

maximum coherence located on the precentral gy-

rus. In [14] was found that also 24-28 Hz band may 

carry the information of hand velocity. 

In [1] the ECoG signals were decoded on a 

single-trial basis by regularized linear discriminant 

analysis. In [22] predictions were made using mu-

tually exclusive test by using of the Kalman filter 

with average correlation coefficient ~0.4. In [14] 

hand movement velocity was reconstructed during 

a drawing task by Kalman filtering and a smoothing 

algorithm with average Pearson correlation coeffi-

cients ~0.37 for the h-dimension and ~0.24 for the 

v-dimension.  

The extraction of kinetic information from the 

movement intentions in EEG signals can be done 

using the marginal distribution of the discrete wave-

let transform (DWT) and the temporal features from 

EEG signals [24].   

Conclusions 

Investigations of movement-related electrical 

brain activity provide insight about mechanisms 

that take place in the cortex during preparation and 

execution of different movements. Functioning of 

neural networks formed due to movement condition 

can be studied in case of interdependencies esti-

mations.  

Various combinations of preprocessing meth-

ods can be used to increase the significant infor-

mation from brain activity pertaining to movement 

features. The most complicated but promising 

methods are techniques of signal decomposition on 

different components such as ICA, ERD or wavelet 

decomposition, which allow to allocate particular 

components reflected just movement-related brain 

activity. 

The most important researches are focused on 

classification of different movements and move-

ment prediction which can be used for brain-

computer interface and rehabilitation systems. Im-

provement of movement classification and predic-

tion is possible by extracting the features of cortex 

activity that best describe the changes in the brain 

in case of movement. As such features CMC esti-

mations obtained by using of EMG data can be 

used. 
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Исследование электрической активности мозга, связанной с  

движениями: обзор 

Работа посвящена рассмотрению проблем, возникающих при изучении деятельности мозга, 
связанной с движениями. Изменения в коре головного мозга во время выполнения движения, а 
также его представления, отображают нейронные сети, сформированные для планирования и 
реализации конкретного движения. 

Приведен обзор методов первичной обработки зарегистрированной активности головного 
мозга, которые могут быть использованы для повышения значимости выделенных признаков. 
Описаны закономерности, которые имеют место до начала движения и после него. Представ-
лены методы, подходящие для оценки связи как между активностью мозга и активностью 
мышц, так и между активностью областей головного мозга. Кроме того, рассмотрена возмож-
ность классификации и прогнозирования движений вместе с реконструкцией кинематических 
свойств. Библ. 27, рис. 2. 

Ключевые слова: ЭЭГ; ЭМГ; мозговые потенциалы связанные с движениями, МПСД; десин-
хронизация связанная с событием; ДСС; кортико-мышечная когерентность; КМК; прогнозирова-
ние движения; интерфейс мозг-компьютер; ИМК. 

 

УДК 621.391 

А.В. Ваврещук 

каф. фізичної та біомедичної електроніки, 

Національний технічний університет України «Київський політехнічний інститут», 
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Дослідження електричної активності мозку, пов'язаної з рухами: 

огляд 

Робота присвячена розгляду проблем, що виникають при дослідженні діяльності мозку, пов'я-
заної з рухами. Зміни в корі головного мозку під час виконання руху, а також його уявлення, відоб-
ражають нейронні мережі, сформовані для планування і реалізації конкретного руху. 

Наведено огляд методів первинної обробки зареєстрованої активності головного мозку, які 
можуть бути використані для підвищення значимості виділених ознак. Описано закономірності, 
які мають місце до початку руху і після нього. Представлені методи, які підходять для оцінки 
зв'язку як між активністю мозку і активністю м'язів, так і між активністю областей головного 
мозку. Крім того, розглянута можливість класифікації та прогнозування рухів разом з рекон-
струкцією кінематичних властивостей. Бібл. 27, рис. 2. 

Ключові слова: ЕЕГ; ЕМГ; мозкові потенціали пов'язані з рухами; МППР; десинхронізація по-
в'язана з подією; ДПП; кортико-м'язева когерентність; КМК; прогнозування руху; інтерфейс мо-
зок-комп'ютер; ІМК. 
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