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Abstract—The paper deals with an analysis of steady-state behaviours in inverter circuits. Transient and steady-state
processes in inverter circuits are described by differential equations with periodical coefficients. The control of inverter
switches and a load is realised by signals which frequencies are independent. These frequencies are incommensurable. In
order to obtain steady-state periodic solutions ordinary differential equations are expanded into partial differential equa-
tions with two independent variables of time. The solution of partial differential equations is found by calculating a periodic
boundary condition for an arbitrary period in the domain of two time variables. Obtained functions are used for forming
a time delay equation. This equation is solved by the use of the Galerkin method with sinusoidal weight and basis functions.
The result of a calculation is represented in the form of the Fourier series. The periodic boundary condition and steady-state
process for a boost inverter with varied load are presented.

Ref. 8, fig. 6.
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An example of a boost inverter with a varied load is con-
sidered and results of computation are presented.

L INTRODUCTION

The analysis of steady-state processes in periodic
time-varying circuits could be realised either by a com- 1L
putation of a transient process or find an initial value of
a steady-state process. Processes in such circuits can be
analysed by different method [1, 2, 3, 4] in case these cir-

MATHEMATICAL MODEL

Let us consider the circuit of the boost inverter pre-
sented in Fig. 1. The switches S}, S, and S; are ideal.

cuits are controlled by signals with the same or propor-
tional frequencies.

For invertor circuits controlled by one frequency an
initial value for the calculation of a steady-state process
one can find by solving a differential equation on an arbi-
trary period and then equating initial and finite values. In
case of incommensurable frequencies one cannot find an
initial value as a number. The problem is based on that
one cannot find a periodic steady-state behaviour.

Finding of the periodic steady-state behaviour can be
realised by an expansion of ordinary differential equa-
tions with one time variable into partial differential equa-
tions with two time variables [5, 6, 7]. The expansion of
nonlinear differential equations with different input
sources and a process analysis in the circuit of a Buck
converter with periodical supply source are considered in
[6] and [7].

The aim of this article is to find a periodic boundary
condition which can be used for calculation a steady-state
behaviour. The method is based on the expansion of a dif-
ferential equation and solving this equation for one
period. As a result one obtains a time delay equation. This
equation is solved by the use of the Galerkin method and
a result is represented in the form of the Fourier series.

Switches S; and §, switch alternately, if S; is closed,
S, is open as shown in Fig. 2 (we consider that when §)
is closed and S, is open).

L i) s, S,

Fig. 1. Topology of the inverter
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Fig. 2. Switching function of the inverter
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Fig. 3. Switching functions of the load

The switch S; is working as shown in Fig. 3 (y(¢) =1
corresponds to the close state).
The topology of the inverter is changed periodically.

The differential equation describing processes in the cir-
cuit has the form

R, +s(t)&
dl(l) _ ’Y(I)Rl +R2 i
dt L

where R; is the resistance of an inductor, 7 and ® are
periods of switching functions.

E
(l)+z» (D

In case of incommensurable periods of switching
functions s(¢) and y(¢) the steady-state behavior to (1)

is not periodic.

We expand the differential equation (1) from one time
variable ¢ to the partial differential equation to two time
variables ¢ and 1 as follows [5]

0i(t, 1) N oi(t,1)

=a(t,1)i(t,t)+b, 2
Py . (t, )iz, 7) (2)
where
R, +s(z)7R11eR2 2 p
alt,7) = - 1Ok Ry E
L L

It should be noted that the periodic steady-state pro-
cess i (¢,1) =i (t+ 7,7+ 0®) exists for the expanded sys-
tem. Since process is periodical we find a periodical
boundary condition i(¢,0)=i(t+7,0). Using this
boundary condition one can calculate the steady-state
process.

IIl.  SOLVING DIFFERENTIAL EQUATION

Let us find a solution to (2) for an arbitrary period in
the domain of two variables. Assume that values of
parameterst;, T, 1y and © are such as shown in Fig. 4.
In this figure we designate areas of simultaneous work of
switching functions as I, II, III, IV, i.e. I corresponds to
s(t)=1 and y(t)=1, II - s(#)=0 and vy(1)=1,
I - s(¢)=0 and y(t)=0,1IV - s(#)=1 and y(tr)=0.
Inclined lines a, b, ¢ d, e, fand g delimit regions with
the same solutions. We designate hereafter coefficients
kl,kz,k3,k4 as follows

ki = a(t,7)| ky = a(t,7)|

s(O)=Ly(r)=1" s(0)=0,y(0)=1"

ky = a(t, T)|s(z):o,y(z):o’ ky = “(t’T)|s(z):1,y(r):0'
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Fig. 4. Intervals of switching of the inverter and load

For the first interval (situated between lines a and b)
the solution to (2) is found with respect to a boundary
condition i(¢,0)

i(t,7) = eklfi(t—r,0)+(e"ﬂ —1)1;/k1 )
This solution is defined for 7> 7.

In order to find the solution to (2) for the second
interval we shift the coordinate origin to the point (0,7 )

. It should be noted that the solution is determined with
respect to a boundary condition i(0,1) , so we obtain
i(1,7) = €0, — 1) +(e"2’ —1)b/k2 @

In order to write this expression for the coordinate origin
(0,0) we substitute the end of boundaries ¢ —# and

T—>t—t+4 in (3), shift (4) as t > ¢—# and then sub-
stitute the first expression into the second so that we get
i(t,7) = 2" F ) 1 0y +

+ef2n) [ek‘ (=t+4) —1}1; [y + (5)

+ 2070 1 ]prky

For the third interval the solution to (2) is found with
respect to the boundary condition i(¢,0) . For this purpose

we shift the coordinate origin to the point (1,7 )

i(1,7) = €% - 1,0) +(e"3f —l)b/k3. (6)

Now we shift this expression to the coordinate origin
(0,0) . We substitute the end of boundaries ©— 1, and
t > t—1+1 in(5), shift (6) as T — t—1; and then sub-
stitute the first expression into the second, which yields

i(f, T) _ ek3(‘c—‘rl)ek2 (Z—T+‘E1—l‘1)ek1 (‘C—H—l‘l)l-(t -1, 0) +

L) {ekQ(t—Hrl—tl) [ekl(t—tﬂl) _1} bk Q)

In this expression @ <t <T .

From (7) we extract two parts: the function at
i(t—7,0) and the second term, i.e.
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ﬁ (t, T) — €k3 (‘E—Tl )€k2 ([*T‘FTI *ll)ekl(‘C*lJrll) , (8)
g (t,0) = 3T o
X{ekz(l—‘H-T] —[1) |:ek1 (‘E—H—l‘]) _ 1j|b / kl + (9)
+ et —1}1)/1(2} +[ R by
In the same way we find solutions for intervals:
T <t<O+T -1 (situated between lines b and c)
Htr)= ek4(t—T)ek3(‘cft+T7‘rl)ekz(t—‘l:+‘rl—tl) . ekl(r—tﬂl) ,

¢, (6,7) = a(t-T) {ek3(r—t+T—rl) {ekz(mﬂﬁl) v

X[ekl(r—ml) _lJb kg + |:ek2(t_'f+"~'l_tl) _ l]b / kz} +,

+ s T —1]b/k3} [0 A ]p 1k,
O+T -1 <t <O+ (situated between lines c and d)
fi’, (f,T) — ek4(‘t*’tl)ekl(t*T+TlfT)ek2 (T*ll)ekl (t—t+11) ,

g (t,7) = eha(t=1) {ekl(f*TJrTrT) {ekZ(T*tl) y

K[ y]p 4 [ 2T -1Jb/k2} T

st b, } [k 1ok,
O+1 <t <T+1 (situated between lines d and e)
Fa(t,7) = ) i —ekn =) oy (14T
qa(1,7) = oka(t=1) {ekl(f—T”l—T) .
[0 1] ky [ 101 ]/ } ¥
+[ek4<’~"fl) —l}b/k4
T+4 <t<T+0O+1 —1 (situated between lines e and f)

51,0 = BT J T s )
ekz(‘t—l‘+T)

gs(1,7) =0T {ek“(T_HTﬂl_Tl) {ekl(t_mrm '

|:ek4(‘|:—t+T+t1—T1) _ 1j|b / k4} + |:ek3 (=T-n) _ 1:|b / k3 ,

T+O+t{—1 <t<T+0O (situated between lines f
and g)
f6 (t, T) — ek3 (T*‘Cl)ekz (I—T—T+‘El—ll)ekltl ekz(‘l:—l‘+T) ,
q6 (t, T) — ek3(‘[—’f1) {ekz(tf‘C*T+‘El *1) {ekltl .
[0 1 by + [ bt —l}b/kl} n
[T kz} [ bk

Let us use obtained expression to define functions

Sfi(t,1),0<¢t<T,
H,1),T<t<O+T -1,
fltn)= H61),0+T -1 <t <0O+1, ’
J4(,0),0+1 <t<T+y,
f5t,0), T+ <t<T+0O+4 -1,
6, D, T+0O+t -1 <t<T+0.
q(t,1),0<¢<T,

@G ,0),T<t<O+T -1,
3(t,1),0+T -1 <t <O+,
qs(t,1),0+4 <t<T+1,
g5, ), T+ <t<T+0O+4 -1,
q6(t,0),T+O+H —1 <t<T+0.

Using these functions we can interlink boundary con-
ditions by forming the following equation

i(t,0)= f(£,0)i(t-0,0)+q(1,0). (10)

This equation is a time delay equation. The equation is
periodical, i.e. i(¢,0)=i(t+7,0) but T #©® .

q(t,t)=

In order to find the solution we represent the boundary
condition of the current i(¢,0) in the form of the Fourier

series [8]

N
i(¢,0) = a70+ > [ak cos(kwt )+ by sin(kmt)] ,(11)
k=1

2
where = il .
T

We also find the Fourier series for functions f'(z,0)
and ¢(z,0).

In order to find the periodical boundary condition we
use the Galerkin method for finding the residuum of
the equation (10)

R; =i(t,0)~ f(1,0)i(t - ©,0) - q(,0)

over the interval 0<¢<T .

(12)

We multiply (12) by the weight functions cos (ko)

and sin(kor) and integrate obtained expressions as fol-

lows

T
le- cos(kwt)dt =0,
0
T
J.Rl» sin(kot)dt =0.
0
By solving the set (13-14) one obtains coefficients for
the expression (11). It should be noted that in this case
i(¢,0)=i(t,®) and i(t,0)=i(t+7,0). The obtained so-
lution (11) is used for the calculation of the steady-state
current.

(13)

(14)

@
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1V.  RESULTS OF CALCULATION

Let us find the periodical boundary condition of
the inverter circuit for parameter values: E =10V,
R; =02Q, R =45Q, R, =58Q, L=01H,
T=01s, 4=055Ts, ®=T/\2s, 1,=0.850s. In
order to verify the obtained results equation (1) has also
been solved numerically for all intervals. The steady-state
process has been calculated via the calculation of a tran-
sient process with the zero initial condition. The calcula-
tion has been carried out for the time interval from 0 to
42 ©s. The periodic boundary condition calculated for
N =5 and the steady state process for the current are
shown in Fig. 5.

Vertical lines correspond to the moments of time
t=290, t=300 and ¢t=310. One can see coinci-
dences of the periodic boundary condition with the steady
state process.

Let us find the steady-state current. Points in which
the periodic boundary condition and steady state process
coincide are initial values for the calculation of
the steady-state process.

235 ¢

2.15 2.20

Fig. 5. Periodic boundary condition (2) and steady state current (1)
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Fig. 6. Steady-state current for 300 <¢ <310

Hapiiimna no penakuii 14 6epe3ns 2019 p.

Let us chose the point for the boundary condition at
t =300 . In this case the shift on the exes ¢ is equal to

the reminder of 6 =300 mod7 and the time shift is 87 .

Since 87 is situated in the interval 0 <7 <7 - ® we use
(4), and (7) for the calculation of the stead-state current.
The steady-state current calculated by numerical and pro-
posed method are presented in Fig. 6. One can see that
these calculations are practically the same.

CONCLUSION

In this paper the periodic boundary condition has been
determined for the time varying circuit. The ordinary dif-
ferential equation has been expanded into the partial dif-
ferential equation with two variables of time. Solving this
equation allows to determine a time delay equation.
The solution for the steady-state behaviour has been rep-
resented by the Fourier series. The example of calculation
of the periodic boundary condition for the boost inverter
is presented and compared with a numerical calculation
of steady-state behaviour. Obtained results show good
match for periodical values.
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1110 BCTAHOBMBCS 31 3MIHHMM HaBaHTAKCHHSIM

Kopotees 1. €., a.1.1. mpod. ORCID 0000-0002-7990-5413

3eJIeHOTYPCKHUI yHIBEPCUTET
3enena ['ypa, [Tonpma

Anomayia—CTaTTs NPUCBIYEHA aHAJII3Yy NPoLeciB, 10 BCTAHOBUJINCS, B JIaHIIOrax iHBepTopiB. IIpouecu B JjaHuiorax
iHBepTOpa onucyThes AudepeHnialbHUMU PiIBHAHHAMM 3 NepioAuYHUMU KoedinieHTamMu. YipaB/iHHs KJI04aMu iHBep-
Topa i HAaBaHTaXKeHHsl 31iliCHIOEThCSI CHTHAJIAMH, YaCTOTH SIKHX € He3alIeX)KHMMH. BiqHomeHHs1 Mik yacToTaMHu BH3HaYa-
€TbCsl ippanioHaJbLHUM YHCJI0M. /{15 3HAX0/IuKeHHS pillleHHs], 0 BCTAHOBUJIOCS, 3BHYAliHI 1ndepeHUiaJbHi piBHAHHSA po-
3MMPIOIOTHCA HA PIBHSAHHS B IPUBATHUX MOXIAHUX 3 ABOMA He3aJIeKHUMM 3MiHHUMM Yacy. PilneHHs piBHSIHb B IPUBAaTHUX
MOXiTHMX 3HAXOIUTHCS LIJISIXOM 00YHCJIEHHS MePioAMYHOr0 IPAHMYHOI0 3HAYEHHS HA TOBIIbHOMY Nepiodi B mpocTopi ABoX
3MiHHHX Yacy. OTpuMaHi GpyHKLII BUKOPHCTOBYIOThCH A1 (POPMYBAaHHS PiBHAHHA 3 4aCOBOI0 3aTpUMKOI0. Ile piBHsAHHSA
BUPILIY€ThCA 32 1010MOrow Meroay I'asnepkina 3 cuHycoigaJibHUMM Baropumiu i 6azosumu gpyHkuisimu. Pesyanrar po3pa-
XYHKY npeicTtasjeHuii y purasaai paay ®yp'e. [IpeacrasiieHi pe3yJbTaTH po3paxyHKiB NepioAM4HOro rpaHUYHOrO 3HA-
YeHHs i nponecy, 0 BCTAHOBHBCS, JIsl lIePeTBOPIOBAYa, 10 MiABUINYE, 31 SMIHHUM HABAHTAKEHHSIM.
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Annomayua—CTaThsl NOCBSAIICHA AHAJNM3Y YCTAHOBHBUIMXCH NPOLECCOB B lenax MHBepTOopoB. Ilponecchl B mensix
HHBEPTOPA ONMChIBAITCS AU PepeHIHATBHBIMHE YPABHEHHSIMH € IePHOAMYECKMMH K03 dunueHnTamMu. YpasjeHue K-
4YaMU MHBEPTOPA U HATPY3KHM OCYLIECTBJSAETCS CUTHAJIAMH, YACTOThl KOTOPBIX SIBJSIIOTCS He3aBHCHMMbIMHM. OTHOLIeHHe
MeKIy YacTOTAMH OMpe/elisieTcs HpPAMOHAILHBIM YHcI0M. JI1s1 HAX0XKIeHUsI YCTAHOBUBIIET0CsI pellieHUsl 00bIKHOBEH-
Hble JH(depeHInaIbHbIE YPABHEHHS PACIIUPSAIOTCS HA YPABHEHHUs] B YAaCTHBIX NPOU3BOAHBIX € ABYMS He3aBHCHMBIMH
nepeMeHHbIMH BpeMeHH. PellieHne ypaBHeHHii B 4aCTHBIX MPOU3BOAHBIX HAXOAUTCS MyTeM BbIYMC/IEHHS IePHOIHYECKOT0
TPAHHYHOTO 3HAYEHHs] HA NMPOU3BOJIbLHOM Nepuo/ie B MPOCTPAHCTBeE ABYX NepeMeHHbIX BpeMeHH. [lonyyeHHble (yHKIMH
HCNOJIB3YITCS 115 ()OPMUPOBAHNS YPABHEHHS ¢ BPEMEHHOIl 3a]ep:KKoii. ITO ypaBHEHHE pelIaeTcs ¢ IOMOIIBI0O METOAa
l'asiepkuHa ¢ CHHYCOMJAJILHBIMH BeCOBBIMH M 0a30BbIMH (yHKHUAMH. Pe3yibTaT pacyera mpeacraBiieH B BUAe psaa
®@ypse. [IpeacrasiieHbl pe3yJbTAThI PACYETOB NEPHOANYECKOr0 IPAHUYHOI0 3HAYEHHS] U YCTAHOBUBIIEr0cs Npouecca JJIs
MOBBIIIAKINEro Mpeodpa3oBaTelisi C K3MEHsSIEMOIi HATPY3KOIi.
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