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Abstract—This article is aimed at analyzing and improving the methods of preprocessing ECG signals for the task of
detecting low-amplitude regular components. This study analyzed the main advantages and disadvantages of existing ECG
signal preprocessing methods for the detection of late ventricular and atrial potentials. Based on this analysis, a cardiac cycle
averaging method was proposed in order to increase the accuracy of detection of late potentials by various algorithms and
improve the quality of preprocessing of the ECG signal aimed at detection of low-amplitude components. The main feature
of the proposed method is the division of a large number of cardiocycles for averaging into smaller aggregates (epochs), and
the subsequent application of linear matrix decomposition to suppress irregular inclusions. Also, when dividing into epochs,
it can be used overlapping. It can reduce the difference between epochs, and increase the number of cardiocycles for aver-
aging. The use of this approach allows to minimize irregular inclusions in the ECG signal and increase the accuracy of the
selection of low-amplitude late potentials. In addition, the division into epochs and overlapping makes possible to avoid
blurring of low-amplitude high-frequency components during averaging as a result of heart rate variability, as well as to
improve the quality of averaging with a reduced number of cardiocycles. To test the proposed method, various approaches
were used to assess the ECG signal preprocessing. Mostly, we compared the cardiac cycles obtained as a result of different
averaging algorithms and the proposed method with the template. To test the averaging method, an artificial ECG signal
was developed with existing noise, late ventricular and atrial potentials, heart rate variability, and a high-amplitude compo-
nent that occurs at a random location every two heartbeats. The template cardiac cycle was obtained from the original
artificial signal without any distortion or noise. Firstly, we visually compared and evaluated different averaging methods
with the template. Secondly, we calculated the similarity metrics of the late potentials on the averaged cardiac cycle with
the late potentials on the template signal. Based on these metrics, the curves of dependence of the similarity values on
the amplitude of late potentials on the ECG signal were calculated. Thirdly, we evaluated the impact of the proposed aver-
aging method on the classification results of various machine learning algorithms on real ECG signals with available late
potentials. The overall testing result showed that the proposed averaging method is able to reproduce the morphology of
low-amplitude regular components by 10-30% more accurately and improve the classification accuracy by 5-12%.
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cessing algorithms; signal denoising; machine learning.

I INTRODUCTION important to have sensitive and reliable methods for

their determination.
Modern ECG screening methods make it possible to

diagnose pathologies of the cardiovascular system in The most common method of detecting low-ampli-
the early stages. Indeed, in the early stages of the dis- tude components today is high-resolution ECG, as well as
ease, changes in the ECG are so insignificant that they ~ R-wave (SAECG) and P-wave (PSAECG) ECG signal averag-
can be overlapped, for example, by the noise of the elec-  ing. Late potentials, which are studied by high-resolution
trodes and the quantization error of the initial signal [1].  electrocardiography and have an amplitude of 1-
The presence of late potentials can be a precursor of 40 microvolts and lie in the frequency range of 40-
atrial and ventricular fibrillation and cause life-threaten- 250 Hz, are low-amplitude and high-frequency inclusions
ing conditions of the cardiovascular system [2]. in the ECG [3].

Detection of late potentials can be used to diagnose The useful ECG signal consists of periodic pulses (car-
atrial and ventricular fibrillation, as well as other life-  diocycles), while the noise from the registration tract,
threatening arrhythmias in the early stages, so it is very
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movement artifacts, and other abnormalities are non-
periodic and harmful components. By averaging the car-
diocycles, the conribution of the irregular components is
reduced, and on the other hand, increased the regular
ones [4].

When late potentials are determined, 250-400 cardi-
ocycles are usually used [5]. A smaller number of cardio-
cycles leads to insufficient suppression of unwanted
noise and irregular components. A higher number of car-
diocycles leads to a smoothing of the useful low-ampli-
tude signal.

Despite the fact that the cardiocycle averaging
method suppresses noise and irregular components,
the main disadvantage is that the resulting averaged sig-
nal is a superposition of the noise components of each
individual cardiocycle with the useful signal. High-ampli-
tude irregular components can contribute inclusions to
the averaged signal, which in terms of shape and fre-
quency composition will have the characteristics of
the desired useful signal, but not be it.

Another approach to detecting low-amplitude com-
ponents, namely late potentials, is a method based on
a vector analysis of the ECG. For this method, orthogonal
lead systems are used, for example, Frank's lead system
[6]. This method has several improvements due to fewer
leads and, as a result, fewer factors for mistakes. Alt-
hough this method has certain advantages, it still has dis-
advantages associated with direct signal averaging. In
addition, cardiographs with a system of Frank leads are
not common. With the presence of other additional
pathologies, the accuracy of the prediction of late poten-
tials may decrease according to this method, for exam-
ple, in the case of bundle branches block [7].

Frequency methods are also used to detect late
potentials. Most often, frequency methods analyze
the frequency composition of the averaged QRS com-
plexes and allow analyzing the signal in a narrow fre-
quency range, and, as a result, increase the ability to dis-
tinguish low-amplitude inclusions in the signal [8].

Despite the advantages of the frequency methods of
low-amplitude component analysis, the basis for
the analysis is the averaged signal. It can carry in fre-
quency composition irregular disturbances that have
penetrated into the averaged signal from noisy cardiocy-
cles. Thus, to take advantage of the above methods,
the most important thing is to obtain a standard aver-
aged cardiocycle without noise interference and irregu-
lar inclusions that distort the diagnostic information.
Such irregular inclusions can be: motion artifacts, poor
contact between the skin and the electrode, ECG record-
ing interruption artifacts, muscle tremors, electrical
activity of the skin surface, convulsions, cough, breathing
artifacts, various electromagnetic disturbances [9].

Methods for extracting late potentials based on
the wavelet transform are also widely used. They are

used both for denoising [10] and for the efficient detec-
tion of late potentials [11]. It has both a number of posi-
tive and negative features. Among the positives, wavelet
transform has good localization in time and frequency
domain, it allows analyzing fast and slow changes in
the signal, has a high frequency resolution, can use vari-
ous types of wavelets, which facilitates the search for
the necessary components in the signal.

The negative features of the application of wavelet
analysis are the complexity of transitions from scales to
frequency values, since, depending on different wave-
lets, the frequency value on a certain scale can change.
Also, choosing the right wavelet, and choosing the range
of scales to identify the frequency components is not an
easy task. Due to the high variability of the shape and
frequency composition of the components that are inter-
esting to us, it may be necessary to analyze signal on dif-
ferent types of wavelets, or use complex mathematical
functions, which can complicate the calculation.

Also, methods of linear matrix decomposition are
used [12] to reduce the amount of noise and irregular
inclusions in the signal, as well as to reduce the attenua-
tion effect of regular low-amplitude components (due to
the variability of RR and other ECG intervals). These
methods make it possible to use a smaller number of car-
diocycles by extracting noise disturbances in vectors with
smaller singular values than in the useful signal. Also, it
can significantly reduce the level of the noise component
without using averaging a high number of cardiocycles,
as well as the influence of high-amplitude irregular inclu-
sions and variability of ECG intervals.

Singular value decomposition (SVD) in the task of
extracting late potentials is used according to various
approaches. They have their own advantages, but
the main disadvantage of these methods is that the num-
ber, or range of singular values, in which the late poten-
tials will be extracted, varies greatly for real signals. This
range may depend on many factors, such as the ampli-
tude of late potentials, the number of decomposing vec-
tors, the amplitudes of the ECG signal components, and
other non-periodic components that can be isolated in
the range of selected singular vectors and distort the re-
sulting signal [13].

Other methods of linear decomposition of matrices,
or methods of matrix factorization, such as principal
component analysis (PCA), independent component
analysis (ICA), non-negative matrix factorization (NMF),
factor analysis (FA) are also used in related directions. For
example, for detection of cardiac activity before fibrilla-
tion attacks, selection of low-amplitude fetal ECG, analy-
sis of visual evoked potentials (VEP) on EEG, denoising
[14]-[17]. Although these methods are promising for
the task of detecting late potentials, the problem
remains of establishing the exact range of main vectors,
components, and factors in which late potentials will be
highlighted and irregular disturbances suppressed.
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Thus, for the qualitative selection of late potentials,
an preprocessing averaging method is required, which
allows obtaininig an average cardiocycle with high accu-
racy and can minimize the impact of different types of
interferences with saving morphology and useful low-
amplitude components of the ECG signal during the pro-
cess of signal averaging.

The purpose of the study is to create a method aimed
at reducing the impact of noise and high-amplitude irreg-
ular disturbances on the useful ECG signal. The method
aims to minimize the disadvantages of the above signal
processing methods and will be suitable for use with
a variety of ECG recordings. In addition, it will be suitable
for the further selection of late potentials features
(or other low-amplitude components).

1. MATERIALS AND METHODS

To develop the method, an artificial ECG signal was
simulated with the presence of late potentials, irregular
inclusions, and other features of the signal that can make
a negative contribution to the calculation of the averaged
cardiocycle. The basis of the artificial signal ( )is a
modeled cardiocycle based on the "ECGSYN" algorithm
[18], which generates a pure ECG signal with duration of
200 seconds, with a heart rate of 80 beats per minute
and a sampling frequency of 1000 Hz. The standard devi-
ation of the heart was used with the 2 beats per minute.
It was superimposed with a baseline drift caused by
breathing. Two regular components were also superim-
posed on the modeled cardio signal, namely: late atrial
potentials (LAP) — signals with an amplitude of 1-20 mi-
crovolts, and late ventricular potentials (LVP) — signals
with an amplitude of 20-40 microvolts.
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The duration of the signals of the late potentials is
28 milliseconds. They have the following frequency com-
position:

LP(f) = ay xsin(2mf; )(¢) + @y x sin(2nfy )(¢) +

+az xsin(2nf3)(t),

where f; — 78 Hz, f, — 116 Hz, f3 — 102 Hz, a;. a2 as3 =
=5:12:2.

These particular parameters of the late potentials
were chosen taking into account the electrophysiological
features of the malfunction of the conduction system of
the human heart [19].

Gaussian noise is also superimposed on the modeled
signal so that the resulting signal-to-noise ratio is 40 dB.
In addition, an irregular high-amplitude component is su-
perimposed on the signal, which can simulate manifesta-
tions of movement artifacts, extrasystoles, pacemaker
stimulations, or other similar artifacts on the ECG.

These artifacts can cause a negative contribution to
the averaged signal. The shape of this component can be
described by the following equation:

1
y=x+ x10 ],

where x € [0;1].

The step of the x-axis and the number of counts for
this component depends on its duration and sampling
rate. On the modeled signal, the duration of the irregular
component is 70 ms. The algorithm for adding an irregu-
lar component was configured to randomly generate it
every two seconds at a random location in the cardiocy-
cle with given parameters.

shows how an irregular component is superim-
posed on the LAP in the second cardiac cycle, which dis-
torts the waveform and can make a negative contribution
to the resulting averaged signal.

During the study, preprocessing of the signal was ap-
plied to remove interferences, which included the follow-
ing stages:

1) Removal of baseline wander (0.15-0.3 Hz).

2) Removal of breathing artifacts (0.25-0.5 Hz)
[20].

3) Removal of common-mode interference (50,
60 Hz) and second harmonics (100, 120 Hz)
[21].

4) Removal of high-frequency components,
the frequency composition of which lies outside
the frequency range of the useful signal
(250 Hz).

Since late potentials lie in the range of 40-250 Hz, we
can construct a band-pass filter with cut-off frequencies
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of 1-250 Hz. A zero-phase, 10th-order Butterworth filter
with a cutoff frequency of 1-250 Hz was created [22].
Common-mode interference was removed using a sec-
ond-order digital notch filter with an infinite impulse re-
sponse.

The quality factor (Q-factor) of the filter is 30, and the
center frequencies are 50 and 100 Hz, if there is a 50 Hz
common-mode interference, and 60 and 120 Hz, if
the common-mode interference is 60 Hz. Since the fre-
guency composition of the modeled signal does not con-
tain common-mode interference, this type of filtering
was not applied to the signal.

The division of the useful signal into cardiocycles was
carried out in several stages. The first stage is the detec-
tion of R peaks. The second stage is the division of the
ECG into separate cardiocycles and the formation of sets
of cardiocycles (epochs). The "kalidas2017" detector [23]
was chosen to detect R peaks. This algorithm was chosen
due to its high performance, ability to real-time signal
processing, and high accuracy.

The formation of cardiocycle epochs was performed
by cutting the cardiocycle from the ECG recording.
The beginning of the cardio cycle was set 0.3 seconds
before the R peak. The end of the cardio cycle, on
the contrary, was set 0.5 seconds after the R peak.

In , @a — we can see that during the segmenta-
tion of the pure ECG signal, clearly superimposed cardio-
cycles were obtained. There were no mistakenly selected
cardiocycles. There are observed manifestations of heart
rate variability on the cardiocycle. Heart rate variability
was established in the test signal model.

Due to heart rhythm variability we have a deviation
of P, T waves from the central position, and as a result,
a divergence in the position of LAP and LVP. Moreover,
the divergence of LVP is smaller. It is caused by the fact
that the averaging is carried out according to the R peak
(SAECG). P peak averaging (PSAECG) was applied to
reduce LAP position variance.

In , b, ¢, d, we can see the cardiocycles after
superimposing noise and an irregular high-amplitude
component. The quality of the selection of cardiocycles
is decreased significantly. , b shows the situation
when the R peaks was detected correctly despite nearby
high-amplitude interference. But it happens that a high-
amplitude component is detected as an R peak, which
leads to an erroneous determination of its location
( , d), or an erroneous determination as a result of
the QRS detector correction algorithm ( , C).

TABLE 1 COMPARISON OF INTRA-GROUP VARIANCE INDICATORS FOR A SIGNAL WITH
AND WITHOUT AN IRREGULAR HIGH-AMPLITUDE COMPONENT

Signal type STD cov IQR
Unregular component 0.099 615% 0.038
No unregular component 0.035 15% 0.021

To assess the effect of a high-amplitude irregular
component on the segmentation of QRS complexes,
intra-group variance was estimated in sets of cardiocy-
cles with and without interference.

The standard deviation of (STD), coefficient of covar-
iance (COV), and interquartile distance (IQR) were calcu-
lated and values have been entered into a table (Table 1)
for counts in each group. We can see how the values of
the parameters with the presence of the irregular high
amplitude component are higher, which indicates a
higher intra-group variance of cardiocycles and, as
a result, can lead to a larger error in averaging.

The preprocessing of the signal did not allow signifi-
cantly reducing the level of Gaussian noise, because
the amplitude and frequency composition of such noise
can be superimposed on the useful LVP and LAP signal.
Moreover, the high amplitude of irregular component
that was added to the signal cannot be effectively re-
moved by classical preprocessing methods due to the
frequency composition that lies in the frequency range
of the investigated useful signal.

The presence of these inaccuracies led to the false
detection of R peaks and, as a result, the false detection
of cardiocycles. When the detector detects an irregular
high-amplitude disturbance as an R peak, the real R peak
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which superimposed on the averaged cardiac cycle in the
wrong place becomes a disturbance. It can make a nega-
tive contribution to the process of forming the averaged
cardiac cycle. This happens due to a similar frequency
composition or as a result of missed R peaks detection
algorithm, which exists in most ECG detectors [24].

In addition, the irregular component lying near the R
peak can overlap with the part of the useful signal in
the averaged cardiocycle with subsequent distortion.

To reduce the negative impact of irregular compo-
nents on the useful signal, and to improve the existing
methods of averaging cardiocycles for detecting late
potentials, the following algorithm was proposed ( ).

The principle of the algorithm ( ) is following: car-
diocycles that are selected from the initial signal (usually
about 300 segments) are divided into sets (epochs) of
n cardiocycles in each, and each epoch is selected with
an overlap of m cardiocycles with the previous and next
epoch. Then, a matrix is formed from each epoch, where
the columns are formed from counts of a single cardiocy-
cle from the epoch. Then, the singular value decomposi-
tion (SVD) method is applied to the obtained matrix.

The SVD method uses an mxn decomposition of
the matrix A (where n is the number of columns or cardi-
ocycles in the epoch, and m is the number of cardiocycle
counts in the epoch) in such a way that:

T
A[mxn] = U[mxr]VV[rxr]V[nxr]’

where A — the original matrix, U — the left singular vec-
tors, W — the diagonal matrix of eigenvalues, or singular
values, V —the right singular vectors.

By zeroing the left and right singular vectors with
the smallest singular values, we get a matrix approxima-
tion of the original set of cardiocycles, filtering out
the least important components (for example, noise).
This method is used for the purpose of obtaining a vector
that shows the most significant dependence between
columns (cardiocycles). This vector is the most informa-
tive component of the decomposed cardiocycle epoch
matrix. In the last step, the most informative compo-
nents (vectors) are averaged, forming the initial vector —
an averaged cardiocycle with a significant reduction in
the influence of negative factors.

An averaged cardiocycle is characterized by:
a decrease in high-amplitude inclusions, a decrease in
the degree of distortion of the signal shape (due to
the inaccuracy of R peak detection), a decrease in the ef-
fect of blurring of low-amplitude components after aver-
aging (due to the presence of heart rate variability).

The division into epochs of cardiocycles increases
the reliability of the selection of regular low-amplitude
components and makes it possible to apply other aver-
aging methods to a reduced number of higher-quality,
preprocessed cardiocycles (main vectors). The applica-
tion of overlap increases the total amount of cardiocycles
in processing and minimizes the influence of irregular
components. The influence of such components could be
manifested in a separate epoch of cardiocycles. In addi-
tion, splitting into epochs solves the problem when at
a high number of cardiocycles during averaging (due to
heart rate variability), the ability to extract late potentials
was reduced. Using this method allows us to increase
the number of cardiocycles and, as a result, increase
the accuracy of low-amplitude components detection.
Instead of the SVD algorithm, other matrix factorization
algorithms can be used, such as principal component
analysis (PCA), non-negative matrix factorization (NMF),
factor analysis (FA), etc.

The proposed method aspires to isolate low-ampli-
tude regular components precisely in the first singular
vector or principal component (or factor) in order to
avoid manifestations of harmful components with lower
degree of regularity. Although, there are studies, in
which late potentials appear in the second and even
the third singular vector [25]. The proposed method pro-
vides for a number of measures to maximize the proba-
bility of the studied low-amplitude components falling
into the first, main vector.

Usually, due to the high amplitude of the peaks of
the QRS complex, the approximate form of the QRS com-
plex is distinguished in the first main vector of a matrix
decomposition. This occurs when there is a large number
of cardiocycles in the matrix, to which the singular
decomposition is applied. Using the division into epochs
of cardiocycles allows reducing this negative effect.
According to the reduced number of cardiocycles in
the epoch, compared to the initial number of cardiocy-
cles, a high degree of informativeness is carried not only
by the approximate form of the ECG signal but also by
less low-amplitude regular components, for example,
late potentials.

This kind of sensitivity to low-amplitude regular com-
ponents can be adjusted by defining the size of the car-
diocycle epoch (n) and increasing the number of these
epochs by overlapping (m).

The proposed method also increases the reliability of
detecting a useful signal in the main decomposition vec-
tor. So, if in one epoch, regular late potentials will not be
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determined in the first principal vector, they will be allo-
cated in the first vector of other epochs. In addition,
the reliability of detecting low-amplitude components,
such as late potentials in the first, main vector, can be
increased by filtering the signal in a narrow frequency
range, thereby significantly reducing the influence of
high-amplitude low-frequency components, or by cut-
ting out zones of interest from cardiocycles.

This approach allows analyzing a much smaller seg-
ment of the signal and, as a result, significantly reduces
the impact of unwanted components. For example, to
detect LVP, the region of interest can be narrowed down
to the ST-T segment.

The allocation of the averaged cardiocycle with late
potentials by various methods was also investigated
( ). The results of averaging according to different
methods ( , b, ¢, d) were compared with the refer-
ence cardiocycle ( , a). The results of averaging car-
diocycles for the ECG from the public data bank were also
analyzed [24]. Two real signals were assessed with clas-
sical averaging ( , €, g) and with averaging by the pro-
posed method ( , £, h).

To form a reference cardiocycle (template), an artifi-
cial cardiocycle without existing disturbances and heart
rate variability was formed, then LVP and LAP signals
were superimposed on it, according to the same algo-
rithm as for signals with disturbances.

Similarity metrics were also calculated to investigate
the quality of detection of low-amplitude regular compo-
nents (late potentials).

The methods of improving the quality of selection of
late potentials were applied to the studied signal,
namely, filtering in a narrow frequency range (40-
240 Hz), and narrowing the zone of interest to the ST seg-
ment for LVP selection ( , @), and to the PQ segment
to select LAP ( , b).

The cosine similarity (1) and the Pearson correlation
coefficient (2) were used to evaluate the difference
between the template signal and the signal extracted
after averaging.

AxB
| A< Bl

_ Y4B M
\/zzil 47 \/ZL B}

where A, B — n-dimensional vectors, and | |A] ], | |B]]| —
Euclidean norms of vectors (A, B) in the space of real
numbers.

CosSimilarity 4 p =

2D 0i- )
S S

where x, y — n-dimensional vectors.

. (@

rpearson

On the basis of similarity metrics (1) and (2), the qual-
ity of selection of late potentials by different methods
was compared depending on their amplitude in the mod-
eled signal.

The classic averaging method of cardiocycle epochs
and the proposed averaging method with selection of
main vectors based on SVD, PCA, and FA methods were
compared ( ).

An artificial signal with an irregular high-amplitude
component, Gaussian noise (with the resulting signal-to-
noise ratio of 30 dB), and a heart rate of 80 beats per
minute with a standard deviation of 2 beats per minute
was applied to the input of various averaging algorithms.
The parameters of the proposed averaging method were
set to 30 epochs of cardiocycles with an overlap of
15 cardiocycles.

The arithmetic mean was used to average the main
vectors obtained from the cardiocycle epochs. Quality in-
dex values were calculated for LVP and LAP with ampli-
tudes of 1-40 microvolts with the step of 5 microvolts.

In addition, a study of the influence of the proposed
signal preprocessing method on the classification results
was conducted.

A test database with available late potentials was
developed based on the public database [26] "PTB Diag-
nostic ECG Database Version: 1.0.0" to test the proposed
method. Own development of the database was chosen
because the data with available real (not artificial) late
potentials are currently not widely distributed and avail-
able.

This database includes 549 high-resolution ECGs with
a duration of about 115 seconds from 294 subjects with
a quantization rate of 16 bits and a sampling frequency
of each lead of 1000 Hz.

The database includes 148 patients with myocardial
infarction, 18 patients with cardiomyopathy and heart
failure, 14 patients with various types of arrhythmias,
7 patients with hypertrophy, as well as 52 healthy volun-
teers without existing disorders of cardiovascular activ-

ity.
These pathologies can be accompanied by the pres-

ence of low-amplitude LVP and LAP, on the basis of which
a test database with available late potentials can be built.

The main feature of the "PTB Diagnostic ECG Data-
base Version: 1.0.0" database is the inclusion of orthog-
onal Frank leads (X, Y, Z) in addition to the 12 standard
leads.

This allows us to use the method of detecting late
potentials based on the method generally accepted by
the European Society of Cardiology, the American Heart
Association, and the American College of Cardiology [27].
This method is based on the construction of the vector
magnitude on the base of three ECG projections of
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the heart from Frank's orthogonal leads. According to
this method, using vector magnitude, we can calculate
the necessary parameters of the cardiocycle to detect
the presence of late potentials [28]. Thus, the following
vector magnitude parameters are characteristics of LVP:
the duration of the QRS complex > 114 ms, the root-
mean-square voltage of the last 40 ms (RMS40) < 20 mi-
crovolts, the total duration of the fragment of the QRS
complex with voltage < 40 microvolts (LAS) more than
38 milliseconds. In turn, the following parameters of vec-
tor magnitude indicate the presence of LAP: P wave
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Fig. 4 Cardiocycles averaging by various methods:

duration (PWD) > 115 ms, root-mean-square voltage of
the last 20ms P wave (RMS20) < 2.2 microvolts.
The presence of late potentials was declared if at least
two of the three conditions for LVP and both conditions
for LAP were obtained [11]. Therefore, based on this
method, a test database was obtained, in which there are
137 recordings with available LVPs, 47 recordings with
available LAPs, 14 recordings with available LVPs and
LAPs, and 351 recordings without available late poten-
tials.

0.75 4
8
g 0251 J l
a ]
g 0.00
<
-0.25 4
0.0 01 02 03 04 05 06 0.7 08
Time [sec]
b)
0.75
>
50.50 -
0251
2
"2.0.00 l
g
<0.25
0.0 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time [sec]
d)
= 0.5
>
E 044 10
o 0.3 ]
% o2
2. 0.1+
£ 0.04
< _0.14
0.0 0.1 0.2 .3 04 0.6 0.7 0.8
Time [sec]
f)
— 0.05
>
£ 0.00-
3
5.-0.10
g
< —0.15
T T T T T
0.0 0.2 .04 0.6 0.8
Time [sec]
h)

a) reference cardiocycle with available late potentials; b) the main vector in the SVD decomposition of one epoch;
c) averaged cardiocycle; d) averaged cardiocycle built on the basis of the proposed method;
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e) averaged cardiocycle “a” from the databank obtained by classic averaging; f) averaged cardiocycle “a” from the databank obtained by

averaging using proposed method;

g) averaged cardiocycle “b” from the databank obtained by classic averaging; h) averaged cardiocycle “b” from the databank obtained by

averaging using proposed method;

0 — LVP on the template cardiocycle; 1, 2, 3 — artifacts on the averaged cardiocycle; 4, 5, 6 — artifacts on the main vector of one epoch; 7 —
LVP after averaging using the proposed method; 8, 13 — distortion of the shape of the cardiocycle as a result of signal averaging with inter-
ferences; 10 — saving of the shape of the P wave with low-amplitude inclusions when averaging by the proposed method; 12 — distortion of
the area with the presence of late potentials as a result of averaging the signal with interferences; 9, 11, 14 — late potentials on SAECG.
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Fig. 6 Quality indicators of late potentials allocation (LAP and LVP) depending on their amplitude and type of averaging method:
a) for classical averaging method; b) for the proposed SVD-based averaging method;
c) for the proposed PCA-based averaging method; d) for the proposed averaging method based on FA.

Classification models based on the support vector
machine method (SVM), random forest classifier (RF),
logistic regression (LR), and k-nearest neighbors
(K-neighbor) were developed for testing the proposed
preprocessing method.

For classification, the proposed averaging algorithm
(Fig. 3) had the following parameters: epoch size n =
= 25 cardiocycles, overlap m = 10 cardiocycles, selection
of the main vector (cardiocycle) was based on the SVD
method, averaging of the main vectors was carried out
by the arithmetic mean.

For the selected classification models, a system of
features was calculated, that can characterize the pres-
ence of late potentials in time and frequency representa-
tion. The set of features was calculated on the basis of

one of the existing approaches to the detection of late
potentials using machine learning [10].

The basis for calculating the set of features was
the vector magnitude (VM), which is extended to an
arbitrary number of cardiographic leads, and calculated
from 12 standard leads (I, I, Ill, V1, V2, V3, V4, V5, V6)
according to the formula [28]:

M =3 XEO),

where Xi — the averaged cardiocycle for each of the se-
lected leads.

Therefore, during the training of the classification
model, a set of 5 features used to classify LVPs and a set
of 3 features used to classify LAPs were formed for each
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examined ECG signal. For LVP, according to [28], the fea-
tures based on the vector magnitude graph were calcu-
lated:

e the delay between R peak and point j (the point
of transition of the S wave into the ST segment),
in milliseconds;

e the value of the root-mean-square voltage of
the last 40 ms (RMS40) of the QRS complex, in
microvolts;

e the value of the total duration of the QRS com-
plex sections with voltage < 40 microvolts, in mil-
liseconds;

e the value of the energy ratio according to
the time-frequency representation between
the vector magnitude in the time range of LVP
and the energy of the QRS complex in the fre-
qguency range of 55-300 Hz;

e the value of the energy ratio according to
the time-frequency representation between
the vector magnitude 80 ms after the end of
the QRS complex and the energy of the QRS com-
plex in the frequency range of 55-300 Hz.

Then, by analogy, the following features were calcu-
lated for late LAPs:

e the delay between the top of the P peak and
the end of the P wave;

e root-mean-square voltage of the last 20 ms P
wave (RMS20), in microvolts;

e the value of the energy ratio according to
the time-frequency representation between
the vector magnitude 80 ms after the end of
the P wave and the energy of the P wave in
the frequency range of 55-300 Hz.

To study the proposed method, a binary classification
was carried out. Classification models were trained to
predict normality and pathology signals with and without
late potentials using ECG data from databank. On the ba-
sis of the developed database with available real ECG sig-
nals with LVP, and LAP, as well as control healthy signals,
the described features were calculated. Features were
calculated using different types of data preprocessing:
classical averaging and averaging according to the pro-
posed method. In the obtained datasets of features, nor-
mal and pathology classes were coded into the numerical
format 0 and 1, respectively. After that, observations
with a large number of missing values (2 or more) were
removed. The rest of the missing values were replaced
by the medians of the corresponding features.

Outliers that lie outside three standard deviations
were also removed and replaced by the median of
the corresponding sample in the dataset. After that,

truncation of the largest class to the size of the smallest
was carried out by the method with the random selec-
tion of observations to obtain a class sizes ratio of 1:1.
The last step of data preparation was data standardiza-
tion using the "Robust Scaler" algorithm, which is
resistant to outliers [29].

As a result, 141 normal observations and 141 pathol-
ogy observations for LVP signals (processed using classi-
cal averaging), 138 normal observations and 138 pathol-
ogy observations for LVP signals (processed using
the proposed averaging method), and 42 and 46 obser-
vations, for LAP processed using classical averaging and
the proposed averaging method, respectively, were sent
to the machine learning algorithms after the feature sets
preprocessing.

Based on the obtained results of classification from
developed database with real LVP and LAP contained
ECG signals, the number of true positive (TP), true nega-
tive (TF), false positive (FP), and false negative (FN)
results were calculated. These numbers were used to cal-
culate the statistical metrics of the accuracy of the clas-
sification models, namely: the probability of making
a first-order error (FPR), the probability of making a sec-
ond-order error (FNR), sensitivity (TPR), specificity (TNR),
and overall accuracy (ACC). These metrics were
calculated by the following formulas:

N ' |
TP+ FN TN + FP
R S
FP+TN FN +TP
4CC = TP+TN
TP+TN + FP+FN

Also, the average value of each accuracy metric was
calculated for further analysis.

Thus, during the study of the influence of the pro-
posed preprocessing method of the ECG signal on the
classification results, a summary table (Table 2) was ob-
tained, according to which the comparison was made.

1. RESULTS AND DISCUSSION

The analysis of the averaged cardiocycle ( , C)
demonstrates a reduction in the contribution of the man-
ifestations of inaccurate selection of cardiocycles and
high-amplitude irregular components to the overall sig-
nal shape, but the distortion of the R wave ( , 1) due
to the presence of a set of irregular components that
were detected by the detector as R peak.
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TABLE 2 COMPARISON OF THE RESULTS OF THE CLASSIFICATION OF REAL ECG SIGNALS WITH AVAILABLE ATRIAL AND VENTRICULAR LATE POTENTIALS
ACCORDING TO CLASSICAL AVERAGEMENT AND WITH THE PROPOSED AVERAGING METHOD

Classification model Late ventricular potentials
Classical averagement Proposed averaging method
FPR FNR TPR TNR ACC FPR FNR TPR TNR ACC
SVM 0,45 0,19 0,81 0,55 0,67 0,35 0,14 0,86 0,65 0,74
RF 0,28 0,35 0,65 0,72 0,69 0,16 0,36 0,64 0,84 0,75
LR 0,45 0,19 0,81 0,55 0,67 0,29 0,23 0,77 0,71 0,74
K-neighbor 0,21 0,35 0,65 0,79 0,73 0,13 0,45 0,55 0,87 0,74
Mean of results 0,35 0,27 0,73 0,65 0,69 0,23 0,3 0,7 0,77 0,74
Late atrial potentials
SVM 0,55 0,33 0,67 0,45 0,53 0,17 0,57 0,43 0,83 0,68
RF 0,55 0,00 1,00 0,45 0,65 0,25 0,43 0,57 0,75 0,68
LR 0,55 0,50 0,50 0,45 0,47 0,17 0,57 0,43 0,83 0,68
K-neighbor 0,36 0,50 0,50 0,64 0,59 0,17 0,57 0,43 0,83 0,68
Mean of results 0,50 0,33 0,66 0,50 0,56 0,19 0,54 0,47 0,81 0,68

This phenomenon occurred due to the presence of
a set of irregular components, that were detected by
the ECG detector as an R peak. There is also a distortion
of the shape of the late potentials ( , 2). This
occurred due to the presence of an irregular high-ampli-
tude component, as well as other noises in this area dur-
ing the averaging of cardiocycles. In addition, there is
a distortion of the T wave shape ( , 3). This distortion
is the result of the high number of interferences and
wrong detection of the R peak position. Because of that,
the T waveform on the averaged signal began to differ
from the reference one. As a result, bulges and depres-
sions began to appear in places, where they should not
be.

The analysis of one epoch of the SVD decomposition
( , b) shows, that the main vector has inclusions of
high-amplitude irregular components — ( ,4,6), but
their amplitude is much lower, than disturbances in
the initial signal. The manifestation of these components
in one epoch can be explained by the presence of several
high-amplitude irregular disturbances in different cardi-
ocycles in this epoch. Also, as a result of extracting
the main vector in one epoch, the LVP was slightly dis-
torted ( , 5), but these distortions are much smaller
than in the case of the averaged cardiocycle. These
results ( , b) were obtained from an epoch of only
30 cardiocycles, that is a significant improvement com-
pared to the separately averaged signal of 250-300 cardi-
ocycles. The best result was obtained during cardiocycle
averaging using the proposed method ( , d). Mani-
festations of the high-amplitude irregular component are
almost not observed, and the morphology of the signal
is largely similar to the reference cardiocycle. In addition,

the section of the cardiocycle with late potentials ( ,
7) was selected best with the least distortions relative to
the reference cardiocycle ( ,a).

Analyzing signals from the data bank ( ,e,g f h),
we found that the classical averaging of cardiocycles can
lead to distortion of the morphology of the cardiocycle
( , 8, 13), especially in the presence of high-ampli-
tude noise in the real ECG signal. This can significantly

distort the results of the classification of various pathol-
ogies and late potentials. This effect is especially negative
when the distortion of the shape of the signal falls on
the area with late potentials ( , 12). These defor-
mations can change the form of low-amplitude compo-
nents and make them indistinguishable for a doctor, as
well as artificial algorithms for detecting late potentials.

Averaging of real signals form the databank over
the proposed method, in turn, shows a more accurate
display of the morphology of the ECG wave ( , 10),
as well as greater resistance to interference, maintaining
low-amplitude inclusions at the same time, in which late
atrial potentials can appear. As a result, it makes possible
to observe and measure the area with late potentials in
more details.

From the graphs of the similarity metrics ( )it can
be observed, that the proposed method at low ampli-
tudes of late potentials manifests itself much better than
the usual averaging of cardiocycles. At LAP with an
amplitude of 1 microvolt, the quality index for the pro-
posed SVD-based algorithm is 10% better than for the
averaged signal , b), 20% better for the FA-based al-
gorithm ( , d), and almost 30% better using PCA-
based algorithm ( , €). This trend is also observed in
LVP quality indicators. In general, at low amplitudes of
late potentials, the quality indicators of the proposed
method are 10-20% better than the indicators of the clas-
sic averaged signal. Even in the case, when LVP has an
amplitude of 1 microvolt and the averaged signal shows
zero similarity with the template, the proposed method
based on factor analysis shows a similarity coefficient of
about 0.25. With an increase in the amplitude of late
potentials (when exceeding 10-15 microvolts), the sensi-
tivity of the proposed method and the usual averaging of
the cardiocycle are equalized and become close to 1. But
the quality metrics of the proposed method are 3-20%
better in general.

During testing of the proposed method using an input
signal containing about 300 cardiocycles, the following
parameters showed the best results: epoch size n = 25-
30 cardiocycles, overlap size m = 10-15 cardiocycles.
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On the basis of the classification results of the devel-
oped database with real LVP and LAP contained ECG sig-
nals (Table 2), we can see that the overall classification
accuracy for all calculated models varies between 55%
and 75%. Such rather low values are the result of the low
quality of the original database with real ECG data, which
was calculated automatically according to the classic
method of LVP and LAP detection. The data has not been
manually validated, so the resulting dataset contains
false class labels, on which the models are trained. In
addition, three to five signs (depending on the type of
late potentials) were calculated from the 12-channel ECG
according to the above-mentioned method. This number
of features could be insufficient for a complete descrip-
tion of the dispersion of signals with available late poten-
tials. But despite this, the quality of the obtained data-
base is enough for testing signal preprocessing methods,
comparing and analysis of their impact on the quality of
classification.

The analysis of Table 2 shows, that the overall classi-
fication accuracy is higher for the proposed averaging
method than for the classic method. For LVP, accuracy is
5% higher on average, and for LAP 12% higher on aver-
age. In addition, we can see that the probability of mak-
ing a first-order error according to the FPR metric is also
lower with the proposed averaging method, by 12% for
LVP and by 31% for LAP. This indicates, that the proposed
method is more resistant to disturbances, which could
appear on the averaged cardiocycle. This property can
also be useful in late potentials determination. And this
resistance is better manifested with a decrease in
the amplitude of the useful signal.

On the other hand, the probability of making a sec-
ond-order error by the FNR metric is slightly higher for
the proposed averaging method, than for the classical
method, on average by 3% for LVP and 21% for LAP. This
result is explained by the omission of some late poten-
tials due to the high degree of approximation.

This disadvantage can be corrected by reducing
the parameters of epoch size — m and overlap — n, or by
changing the method of selection of main vectors to
a more sensitive one, for example, factor analysis (FA).
We also see a significant increase in the TNR metric, and

suppression in the TPR metric. But the suppression of
TPR is much smaller than the increase of TNR, which is
reflected in the increase in the overall accuracy of
the classification by the proposed averaging method.

To improve the sensitivity of the proposed method in
order to reduce the probability of second-order error, it
is also possible to apply modified approaches to averag-
ing the main vectors (cardiocycles) at the last stage of
the proposed averaging method. These approaches
could be modified using frequency methods, wavelet
analysis, etc.

CONCLUSIONS

So, the proposed method carries a number of
improvements for the reliable detection of late poten-
tials, even in highly noisy cardiac signals. The analysis of
interference resistance on the averaged cardiocycles
showed that the proposed method is more resistant to
high-amplitude irregular interference, wrong selections
of cardiocycles, and distortions of the useful low-ampli-
tude signal (late potentials) than the classical averaging
algorithm.

The results of the comparison of the late potentials
extracted using the proposed method and the usual
averaging based on similarity metrics were obtained.
According to these results, the proposed method
extracts a signal that is more similar to the template after
processing of signal epochs.

This phenomenon is especially evident at small
amplitudes of the useful signal.

On the base of the analysis of the impact of the pro-
posed method on the classification results, it was found
that its use leads to an improvement in the overall accu-
racy of the classification, and also to a decrease in
the probability of the first kind of error.

This method does not make changes to the morphol-
ogy of the signal and is suitable for further application of
already existing methods for detecting late potentials. In
addition, this method can be further developed at
the stages of selection of the main vectors or their aver-
aging. It can also improve the reliability and quality of
the detection of low-amplitude components.
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MeToa nonepeaHboi 06pobku EKI curHanis
ANA BUABJIEHHA Ni3HIX NOTeHUianiB
nepeacepab Ta WAYHOUKIB

A. B. MHeBeUb', ‘?JLF 0000-0001-5448-4045

H. I. IBaHyWKiHa®, K.T.H. AoL., "fiﬁf 0000-0001-8389-7906
Kadeapa enekTpoHHOI iHxXeHepii

HauioHanbHUI TEXHIYHWUI YHiIBEpCUTET YKpPaiHK

"KWUiBCBKMI NOMITEXHIYHMM IHCTUTYT imeHi Irops Cikopcbkoro" R 00syn5v21
Kuis, YKpaiHa

AHomayia—[aHa cTaTTA Hali/fieHa HA aHaNi3 Ta BAOCKOHAJIeHHA MeToAiB nonepeaHboi 06po6bKu eneKkTpokapaiocurHanis
ANA 334a4i BUABNEHHA HU3bKOAMMAITYAHUX PerynspHUX KOMNOHeHT. B gaHomy aocnigykeHHi 6yno npoaHanisoBaHO OCHOBHI
nepesaru Ta HeAONIKM iCHylOUMX Nigxoais A0 nonepeaHboi 06po6Kku EKI curHany ans 3apadi BUABAEHHA Ni3HIX NOTeHuianis
LWIYHOUKIB Ta nepeacepab. Ha ocHOBI npoBegeHOro aHanisy, 3 MeTolo NiABULLEHHA TOYHOCTI BUAB/IEHHA Mi3HIX NOTeHuianis
pi3HUMUK anropuTMmamu, Ta NOKPALLEHHA AKOCTI nonepeaHboi 06po6ku EKI curHany ona BUABNEHHA HU3bKOAMMNNITYAHMX KOM-
NOHeHT, 6y/10 3aNPONOHOBAHO YA0CKOHA/IEHUIA MEeToA, ycepeaHeHHA KapAiouuKnis. [010BHO 0co611BICTIO 3aNPONOHOBAHOrO
MeToAy € po3bUTTA BeNMKOI KiNbKOCTI KapAiouuknis Ana ycepegHeHHA Ha MeHLWI CyKynHOCTi (enoxu), Ta noganblue 3acTocy-
BaHHA NiHIAHOrO MaTPUUYHOrO PO3KAALAAHHA ANA NPUAYLLEHHA HeperynsapHUX BKAOYEHb. TaKoXK 3a HeobxigHOCTI y pasi pos-
6UTTA Ha enoXu MOXKHa BUKOPUCTOBYBATU NepeKpuTTA. Lle A03BONUTL 3MEHLIUTU PO36iXKHOCTI MiXK enoxamu, Ta 36inbwnTn
Ki/IbKiCTb KapAiouMKnis. BUKOPUCTAHHA AAHOTO NiAX0AY A€ MOXKAUBICTb MiHIMi3yBaTU HeperynsapHi BKAoueHHA B EKI curHan
Ta NiABULLUTM TOUHICTb BUAINEHHA HU3bKOAMNAITYAHMX Ni3HiIX noTeHuianis. Kpim Toro, po36uTTa Ha enoxu Ta nepekpuTTa
[,03BONIAE YHUKATU PO3MUTTA HU3bKOAMNAITYAHUX BUCOKOUACTOTHMX KOMMOHEHT NiA Yac ycepeAHEHHA B pe3ynbTaTi Bapiabenb-
HOCTi CepLLeBOro pUTMYy, a TaKOX NOKPaLLyBaTU AKICTb ycepeaHEHOro CUrHany npyu BUKOPUCTAHHI 3MeHLUEHOI KiIbKOCTi Kapaio-
LUKAiB. [lNA TeCcTyBaHHA 3aNpPONOHOBAHOIO MeTO4y BUKOPUCTOBYBAIUCD Pi3Hi NigxoamM AN OUiHKK nonepeaHboi 06po6Kku EKT
curHany. MepeBaxkHo 6yno npoBeseHO NOPIBHAHHA KapAiouMKAiB, AKi 6ynn oTpumaHi B pe3ynbrati po60oTu pisHUX aNropuTmis
ycepeaHEeHHA Ta 3aNPoONOHOBAHOOr0 METOAY, 3 eTa/JIOHOM. [lNA TeCTyBaHHA MeToAy ycepeaHeHHs, 6yno po3pobneHo WTyyHui
EKI curHan 3 HaaBHMM LIYMOM, HasBHUMM Mi3HIMM MOTeHLianamu LWIYHOUKIB Ta nepeacepab, BapiabenbHicTio cepuesoro
PUTMY, a TAaKOXK 3 BUCOKOAMMAITYAHOIO KOMMOHEHTO, AKA BUHUKAE Y BUMAAKOBOMY MicLii Yuepe3 KOXKHi ABa cepueBi cKopo-
YeHHA. ETanoHHMi KapaiouMkn 6yn10 OTPMMaHO 3 BUXiAHOrO LUITYYHOrO CUrHany 6e3 HaaBHUX CMOTBOPEHb Ta Wwymy. Mo nepuwe,
6yno nposBeaeHO Bi3yasbHe NOPIBHAHHA Ta OLiHKA Pi3HUX METOAIB ycepeaHeHHA 3 eTasioHom. Mo apyre, 6yno po3paxoBaHo
MEeTPUKM NoAi6HOCTI Ni3HIX NoTeHUiaNiB Ha ycepeaHEHOMY KapA4iouuKAi 3 Ni3HIMM NoTeHUianamu Ha eTaJIoOHHOMY CUrHai. Ha
OCHOBI AaHUX MeTpUK 6yno NnobyaoBaHO KPUBI 3aN1eXXHOCTel 3HaYeHb METPUK NOoAIGHOCTI Bia amnaiTygu ni3HiX noTeHuianis Ha
EKT curHani. Mo TpeTe, 6yno npoBeaeHO OLiHKY BNAUBY 3aNPONOHOBAHOFO METOAY ycepeaHEHHA Ha pe3ynbTati Knacudikauii
peanbHux EKI curHanis 3 HAaABHUMM Ni3HIMKM NOTEHLialaMM 332 AONOMOTOI0 Pi3HUX aIFOPUTMIB MALLMHHOIO HaBYaHHA. 3aranb-
HUWI pe3ynbTaT TeCTyBaHHA NOKa3aB, L0 3aNponoHMii MeToA ycepeaHeHHA 3a pe3ybTaTaMu A0CAIAXKEHHA 34aTHUIA BiATBOpPIO-
BaTM Mop@d010rilo HU3bKOAMNAITYAHUX PEryaspHUX CKAaaoBux Ha 10-30% TouHiwe, Ta NOKpaLLlyBaTU TOUYHICTb KnacudiKauii Ha
5-12%.

Kntouoei cnoea — ni3Hi nomeHyianu wayHouYKie; niaHi nomeHyianu nepedcepdb; enekmpokapoiozpacgpia; 06pobka biome-
OuyHUX cuzHasnis; anzopummu o6pobKu cusHanie; ycyHeHHA Wymie cuzHany; MawWuHHe Ha8YAHHA.
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