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Abstract—It’s obvious that for development and improvement of methods and apparatus for diagnosis and treatment of
optical flaws of human eye at the modelling stage, it’s necessary to have sets of real measurements. However, data requests
to clinics are accompanied by substantial amount of bureaucracy procedures and, at the same time, acquired dataset may
be too small, which can be critical, for example, for training of neural networks. According to the analysis of existing publi-
cations, publicly available datasets of aberrometry data (sets of eye’s refractive flaws) are rare and consist of relatively low
number of measurements. But, due to current development state of neural networks, it is possible to generate data based on
real measurements. The most common solutions are methods based on the usage of the Generative Adversarial Networks
(GAN). This tendency is also relevant for the modern ophthalmology, but no publications aimed at aberrometry data syn-
thesis were found. For this reason, objective of this work is development of solution for generation of sets of human eye’s
refractive errors using neural networks. Proposed solution includes generator and critic networks trained according to
the Wasserstein GAN with Gradient Penalty (WGAN GP) algorithm. In order to improve training, the method of data
augmentation called Data Augmentation Optimized for GAN (DAG) was used, moreover, the possibility of augmentation of
aberrometry data in two forms was implemented — for both Zernike coefficient vectors and wavefront pixel images.
According to the result’s evaluation, generated data has the distribution close to the real sample (Fréchet distance equals
0.7) and, at the same time, it is neither a copy of real measurements (92% creativity rate) nor duplication of a few aberration
sets (diversity metric equals 3.64 which is close to the optimal 3.83). The direction of further improvement includes enhance-
ment of existing architectures of generator and critic, search or creation of bigger training dataset and refinement of data
augmentation technics.

Keywords: Ophthalmology; Generative adversarial networks; Data augmentation.

small size of a dataset complicates development of net-
work’s architecture and leads to a risk of overfitting.

l. INTRODUCTION

Modern treatment and correction of eye’s optical
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flaws uses variety of different methods and equipment
ranging from individually adjusted contact lenses and
glasses to laser surgery. Precise diagnosis of aberrations
(optical flaws of human eye) is the pledge of successful
choice of treatment approaches. It is reasonable that at
the modelling stage of new treatment and diagnosis
method’s development, high amount of aberration
examples is needed. Taking into consideration capabili-
ties and efficiency of neural networks in the sphere of
diagnosis, the availability of aberration datasets
becomes highly relevant. But, nevertheless, there are
some obstacles on the way of acquiring such datasets for
research. Firstly, the nature of the data — sets of aberra-
tions of human’s eye is the medical confidential infor-
mation which is, moreover, has high degree of unique-
ness, that can be used for identification of persons. This
fact restricts the data’s accessibility. Secondly, detailed
measurement of high order aberrations is quite uncom-
mon. For this reason, not many people undergo such
diagnosis. The latter case is crucial for development of
diagnosis methods based on neural networks because

Thus, the solution to the problem of small amount of
aberration data is relevant. Extensive increase of such
datasets using the mass diagnosis campaigns and pro-
grams requires administrative efforts and high costs.
That’s why usage of technical methods is highly actual
and effective.

1. LITERATURE REVIEW

A. Datasets of Ophthalmological
Measurements

Accessibility of representative datasets is crucial for
statistical data processing methods. Such sets of meas-
urements are highly important for artificial neural net-
works. Thus, it is reasonable to conduct a search of
dataset expansion methods among existing solutions for
neural networks, or among solutions which directly use
neural networks for it.

As it was mentioned before, ophthalmological
datasets are quite rare. It can be observed from the fact
that only one survey [1] of such datasets was found
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during the preparation of this work. Despite the com-
pleteness of this survey, it lacks the information of
human eye’s aberrations — all the investigated datasets
consist of graphical information, from which no data on
refractive errors can be directly acquired. The work [2]
suggests another survey of methods for artificial oph-
thalmological data generation using GANSs, first proposed
by Goodfellow I. J. et al. in [3]. Similar to [1], the aberra-
tion-related information is not provided by [2]. One of
the biggest publicly available datasets of human eye’s
aberrations includes 50 measurements for the research
[4]. This dataset would be used in current work for prep-
aration and evaluation of proposed solution, but, obvi-
ously, generated sample may have low level of similarity
to the real data because of dataset size insufficient for
training high-performance GANs (usually it requires
thousands of vectors). So, from [1] and [2] it can be con-
cluded, that, firstly, among the few ophthalmological
datasets the graphical ones (photos of fundus, iris etc.)
are of research community interest, and, secondly, usage
of GANs for ophthalmological data generation already

Wip,9)=) > NyRY (p)

where W(p,¢) — value of wavefront for the point inside

the unit circle with polar coordinates (p, o), N,T —value
of the norming factor for n-th radial order and m -th

angular frequency, R (p) — value of Zernike polyno-

mial, C" — Zernike coefficient which equals standard
deviation (Root Mean Square) of the mode. The norming

factor N in its turn is defined as:
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And R (p) is described as:
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established itself as an effective solution. That is why it’s
reasonable and actual to expand existing datasets of
aberrations namely through the involvement of GANs
taking into account low number of measurements pro-
vided.

B. Human Eye’s Aberrations

Aberrations can be divided into two types: chromatic
and monochromatic. Chromatic aberrations are caused
by difference in wave distribution for rays with different
wavelength. Monochromatic aberrations emerge during
the distribution of light emission with single wavelength.
Generation of information, which describes monochro-
matic aberrations, is the object of research for this work.

Aberration maps — surfaces of wavefronts — are
the main source of refraction error data. The wavefronts
themselves are usually defined by the weighted sum of
surfaces described by the Zernike modes, which allow to
specify any surface determined in the unit circle with
required accuracy [5]:

<7 (o]

n—|m| _—
Hie)- 3 kl[“z"("'l—)kﬁ{”ki'm'_k}p

Allocations of radial orders and angular frequencies is
shown at Fig. 1.

n—2k

C. Generative Adversarial Neural (GAN)
Networks

Training of the GAN is the competition between two
neural networks: the generator G and discriminator D .
During the training, the discriminator’s objective is to ac-
curately distinguish, i.e., classify, real sample x and arti-

ficial G(z) ones synthesized by the generator used
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Fig. 1 Visualization of Zernike polynomials from 0-th to 4-th radial orders [6]
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random values z. Noise as a generator’s input provides
generated data’s diversity and, according to assump-
tions, represents the sets of latent variables which
implicitly characterize data sample. The head’s rotation
angle on photo can be considered as an illustrative exam-
ple of latent variable. Commonly, the discriminator’s
output on real data should be equal 1, on generated — 0.

Formally, the training of the GAN is described as
a minimax game with value function V(D,G) [3]:

minmaxW(D, G) = E, . p [log(D(x))]+
G D

+E, _p Jlog(1 - D(G(2)))]
where P, is the real data distribution, P, is the noise
distribution.

Training and picking the right architecture for
the GAN is not an easy task, because, unlike other types
of neural networks, loss functions of generator and dis-
criminator depend on each other and change in the pro-
cess of training. Especially relevant it becomes for
the medical data which is usually composed in small
datasets increasing the risk of overfitting. In order to sta-
bilize the training, the Wasserstein GAN was proposed in
[7], changing the approach of sample evaluation by critic
(analog of discriminator of the common GAN), including,
usage of value of unrestricted range as a critic’s metric
for the realism of sample, application of weight clipping,
critic’s Lp and generator’s L loss functions change to
the Wasserstein distance-based:

Lp =E[D(G(2))]-E[D(x)],
L =—E[D(G(2))]

Despite the better stability during the training, WGAN
also has drawbacks. In [8] the negative effect of weight
clipping is described, namely the critic’s tendency to
learn simple functions and necessity of the clipping
value’s fine-tuning, otherwise the risk of gradient explo-
sion or vanishing significantly increases. To address these
issues in [8] addition of gradient penalty to critic’s loss
function was introduced:

lp= E[D(G(z))] —E[D(x)]+
e (930, - |

where x=tx+(1-t)G(z), t is a random value in range
[0,1] , A is atunable coefficient which usually equals 10.
Experimental evaluation of the method proved better

convergence of the training and more realistic images to
be generated.

In case of small datasets, researchers often use data
augmentation in order to expand dataset adding simple
processing of training sample, e.g. rotation, cropping,
translation for image data. Indeed, augmentation usage
cannot properly substitute filling the dataset with higher

amount real measurements, but it is able to significantly
improve neural network training. However, involvement
of augmentation into the GAN training can bring new
risks — generator can integrate augmentations into syn-
thesized images. Harming influence of straightforward
augmentation usage for GANs was experimentally
demonstrated in [9]. It caused increase of the distance
between real and generated images’ distributions meas-
ured by the Fréchet Inception Distance (FID) [10] metric
from 6.8 to 47.3 for the MNIST dataset [11]. Authors of
[9] proposed to use invertible transformations for both
real and generated images, whereby the separate discri-
minant D is assigned to each invertible transformation

T, . For the sake of regularization, all the discriminators

share all the layers except the last ones. It was theoreti-
cally and experimentally proved that the proposed
method — Data Augmentation Optimized for GAN (DAG)
— doesn’t distort distribution of generated images. Thus,
generator safely receives more feedback information
from few discriminators D, . Proposed in [9] minimax

game for GAN is described as:

A
Dﬂg:}V(D'{Dk}’G) = V(D,G)+EI§V(D,<,G),

: by
mev(D,{Dk},G) V(D,G)+K_1év(ok,e),
where A, and A, — coefficients for training configura-
tion, K —number of transformations, wherein the trans-
formation of k=1 is considered as an absence of trans-
formations. The diagram of the method is shown in

. According to experiments, the usage of DAG for
the SS-GAN [12] training with the CIFAR-10 [13] (only
25% of images were used) dataset improved the FID
reducing it from 46.2 to 30.3-35.2 depending on the set
of transformations T, . Hence, the DAG can be consid-
ered as an effective method for data augmentation in
terms of quality of generated images.

Unfortunately, metric, which can comprehensively
evaluate GAN-generated data, doesn’t exist. According
to [14], optimal GAN have to generate data which has
the distribution similar to real sample’s one, but at
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the same time doesn’t copy neither real data nor its own
specimen. Thus, in [14], GAN-generated data is proposed
to evaluate using metrics of inheritance, creativity and
diversity.

For the inheritance calculation of graphical infor-
mation, the FID metric is often used, which involves well-
known network for image classification Inception [15]
and shows the similarity between real and generated
image sets based on the Inception’s response on
the both sets. Usually, the last layer of the Inception is
removed for the FID calculation, and outputs of
the remaining network is used for computation of
the Fréchet distance [16] between measurements and
synthesized data:

2
where X and Y — responses of penultimate Inception’s
layer to real and synthesized data respectively; n, and
Ly — average values of X and Y respectively; £, and
Yy — covariance matrices of X and Y respectively;
Tr(O) — matrix’s trace (sum of all the matrix’s diagonal
elements).

Creativity of generated data is defined as a ratio of
copies of real specimen to the total size of generated
sample. According to [14], the Structural Similarity Index
Measure (SSIM) [17] between all the pairs of real and
synthesized images has to be calculated and, in case it
equals 0.8, synthesized image is considered to be a copy

of a real one. Calculation of the SSIM between two
images x and y is defined as:

(pruy +c1)(2csxy + cz)

2 2 2 2
(ux+uy+cl)(cx+6y+C2)

E

SSIM(x,y) =

where p, —average value of x, H, —average value of

2 : 2
y, oy — variance of x, o

y — variance of y, ©,, -

covariance of x and y, clz(le)2 and ¢, =(k2L)2 -
variables for stabilization of small denominator’s value,
coefficients k; and k, are usually equal 0.01 and 0.03
respectively, L — dynamic range of the signals.

For synthesized image’s diversity evaluation,
the SSIM is also used — consequential clustering based
on the pairwise SSIM is done after exclusion of the copies
of real specimen inside the set of generated images. In
that way synthesized duplicates are removed. The SSIM
threshold for considering image as a copy also equals 0.8.

Despite the aforementioned image-aimed GANs,
data augmentation and evaluation, these methods are
applicable to generation of human eye’s aberrations
described by vectors of Zernike coefficients. It is possible
because of two reasons. Firstly, GANs are also capable of
non-image data generation depending on the training

datasets and architecture. Secondly, wavefront W(p,(p)
can be represented as a monochrome image with pixels’
values of W(p,9). In general, transformation “Zernike

coefficients — Wavefront image” can be considered as
invertible, because vector of Zernike coefficients can be
restored from the image of a wavefront. Thus, it is possi-
ble to integrate this transformation in the DAG without
additional risks of generated data distortion.

1. OBJECTIVE OF THE WORK

Based on the foregoing, WGAN with gradient penalty
(WGAN GP) is one of the best solutions among the gen-
erative neural networks in terms of training stability and
quality of the result. These advantages are useful for
medical data generation, given the restricted accessibil-
ity and small sizes of the datasets. It is reasonable to use
data augmentation for training improvement, but its
straightforward usage can distort generated data. This
issue is addressed by GAN-specific augmentation
methods. DAG is one of them, and its effectiveness is
proven both theoretically and practically. Evaluation of
generated data using inheritance, creativity and diversity
metrics allows better understanding of the result and,
therefore, further improvement of GAN training. Thus,
the objective of this work is to develop the solution for
aberrometry data generation based on WGAN GP with
DAG for sample augmentation, and inheritance, creativ-
ity and diversity metrics for evaluation of synthesized
data.

V. THE PROPOSED SOLUTION

The solution for aberrometry data generation, devel-
oped for this work, includes usage of the WGAN GP with
DAG. Zernike modes with radial order from 1 to 6 (as
commonly used) with coefficients from the [4] will be
used for training and evaluation. For the result assess-
ment the metrics of inheritance, creativity and diversity
are involved.

A. Training of the proposed network

To speed up training and exclude complicated pat-
terns for the GAN to learn, forward W(C) and inverse

W_l(w) translations from the vector of coefficients C

to the waveform image w and vice versa are used for
data augmentation methods. In other cases, data is rep-
resented as a vector of Zernike coefficients scaled to [0;1]

( ).

Transformation T; means passing the coefficients
intact, transformations from 7, to T, require applica-
tion of W(C) and w1 (w) to include the classical tech-
niques of image augmentation such as mirroring, rota-
tion by 90° etc., transformations from Ty,,; to Ty are

for vector data, e.g. shuffle of vector elements, scaling,
etc. Full list of transformations shown in Table 1.
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TABLE 1 TRANSFORMS FOR DATA AUGMENTATION

Ne, Data type Transformation, Tj
1 Vector of Zernike | Intact values
coefficients
2 Wavefront image | Clockwise rotation by 180°
3 Wavefront image | Mirroring along the X axis (top-down)
4 Wavefront image | Clockwise rotation by 90°, with conse-

quent mirroring along the Y axis (left-
right)

5 Vector of Zernike | Swap of vector halves

coefticients
6 Vector of Zernike | Arranging of vector’s elements in re-
coefficients verse order

According to the WGAN GP definition, critic’s loss
functions are defined as:

Lo, =E[ Dk (T (%) |-€[ e (T (6(2))) |+
g (|v504 (), 1) |

where x =tT; (x)+(1-t)7,(G(z)), t isarandom value

>

in range [0,1], A is a tunable coefficient. Whereas,

according to the DAG, the critic is a single network with
N =6 output branches, each consists of one classifica-
tion layer, the total loss function is calculated as:

Generator Network:

Input, 16

| Dense, ReLU, BatchNormalization, 24 |

!

| Dense, ReLU, BatchNormalization, 32 |

i

| Dense, ReLU, BatchNormalization, 40 |

!

| Dense, ReLU, BatchNormalization, 48 |

!

N
Lp=Lp, +EI(ZZLDk, L, =04.

For the generator loss function takes into account
outputs from all critics:

A
Lg =Lg, +E/<Z;L6k' A, =04,

where Lg, =—E[Dk (Tk (G(z)))} .

B. Architecture of Networks

Both generator and critic have simple structure of
multilayer perceptron ( ) with gradual increase (for
generator) and decrease (for critic) of nodes on each
layer.

According to the DAG method, critic network has one
input and few outputs — one for each transformation
T, . As will be seen later, architectures’ configuration is
appropriate but application of more contemporary net-
works can lead to better results, however, may require
more effort on fine-tuning of hyperparameters and
learning settings.

C. Training Parameters
WGAN GP training requires few iterations of critic
weight’s optimization before each update of the genera-
tor’s ones. For current work this amount equals 8. Mini-
batch also chosen as 8. Adam optimizer is used [18] with

its learning rates which equal 1-107% for the generator
and 2-107* for the critic. Coefficient A for critic’s loss
function equals 10. Number of epochs is chosen 1000.
Coefficients k; and k, for the SSIM calculation are both
0.01.

D. Results

Data preparation, training and result evaluation is
done in the Kaggle [19] environment using Python with
TensorFlow [20], SciPy [21] and Matplotlib [22] libraries.

Critic Network:

Input, 27

| Dense, LeakyRelU, Dropout(0.15), 48 |

!

| Dense, LeakyReLU, Dropout(0.15), 46 |

i

, Dropout(0.15), 44 |

| }

| Dense, ReLU, BatchNormalization, 56 |

Dense, 1 | | Dense, 1

!

| Dense, tanh, 27 |

Output, 16

Output #1, 1

Output #6, 1
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Fréchet distance between generated 50 Zernike coef-
ficient vectors and 50 real measurements is used for
generated data quality monitoring (Fig. 5). We don’t
need data specimen reduction with other neural net-
work, as it commonly used for FID, because chosen num-
ber of Zernike modes (27) doesn’t compose vectors of
large volume.
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Fig. 7 Demonstration of pairwise relations between generated
(cross) and real (circle) Zernike coefficients (in um). Distributions
of generated (solid line) and real (dashed line) are situated on the
diagonal (values in um)

As it can be seen from the Fig. 5, usage of DAG with
WGAN GP makes training stable and provides its conver-
gence. Acquired value of 0.7 of Fréchet distance is con-
sidered as an inheritance metric in this work. This value
can be lowered further by training for more epochs but
for this work this distance can be considered as sufficient
for demonstration of effectiveness of the proposed solu-
tion. Visually training results can be observed at Fig. 6
and Fig. 7.

0.92 as a creativity metrics value proves the fact that
the majority of generated vectors are not copies of real
ones. Diversity level of 3.64 for synthesized data is close
to the optimal value of 3.83 (the case when each cluster
has one vector).

Thus, proposed solution is suitable for generation of
artificial datasets of human eye’s aberrations in the form
of Zernike coefficient vectors. Generated data has distri-
bution which can be considered as close to the real one,
and, at the same time, it doesn’t copy neither real data
nor itself.

CONCLUSION

In this work the solution based on usage of WGAN GP
combined with DAG was firstly proposed for generation
of human eye aberrations in the form of Zernike coeffi-
cient vectors. Also, it was implemented using combina-
tion of augmentation methods for both ways of aber
ration representation — vector and wavefront image —
for better training.

According to the results of network’s training,
the proposed solution is capable of generation of
the data which distribution can be considered as close to
the real measurement’s (Fréchet distance equals 0.7)
and, at the same time, synthesized vectors neither copies
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of real ones (92% creativity rate) nor copies of them-
selves (diversity metric equals 3.64 which is close to
the optimal 3.83). It should be noted that the result was
achieved by using relatively small training dataset of 50
measurements. Obviously, the training would lead to
more optimal networks’ configuration in case of higher
number of vectors.

Despite the successful metric values, it is important
to take into account the synthetic nature of generated
data applying it to real-world solutions. That fact can im-
pose limitations on its usage, such as different degree of
similarity between coefficients’ pairwise relations, low
variance of some generated Zernike coefficients, etc.

These kinds of problems are typical for synthetic data
and the proposed solution objectively cannot avoid them
due to inability of neural networks to learn all dependen-
cies between data features perfectly, let alone the most
subtle ones.

Further research can be aimed at usage of more con-
temporary network architectures, such as SAGAN [23],
with more effective methods of data augmentation.
Probably, all the applied and newly designed methods
should take into account limited accessibility of datasets
with human eye aberration — it can be considered as
the main factor which impedes application of common
approach to data generation with GANs.
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[eHepyBaHHA abepoMeTPUYHUX AaHUX
LLUNAXOM 3aCTOCYBaHHA reHepPaTUBHO-
3Mara/ibHOi HEMPOHHOT MepeXi

M. O. ApolieHko, ?’B 0000-0002-3092-3856
HauioHanbHWA TEXHIYHWI YHIBepcUTET YKpaiHu

v

«KUWIBCbKUIM NONITEXHIYHUI IHCTUTYT imeHi Irops CikopcbKoro» R 00syn5v21
Kuis, YKkpaiHa

AHoTauia—OTPUMaHHA MegUUYHUX AaHUX ANA CTAaTUCTUYHUX AO0CNiIAKEHD, PO3PO6KU HOBUX METOAIB NiKyBaHHA Ta BigNoBI-
AHOro o6nagHaHHA € NPOLLECOM, AKUA CYNPOBOAIKYETLCA BEIMKOIO KiNbKICTIO 610pOKpaTUUHUX Npoueayp, a ob6car oTpumaHoi
BUGIPKU MOXKe BUABUTUCb HepoCcTaTHiM. OcTaHHA Nnpo6aema 0co61MBO aKTyanbHA ANA PO3PO6KM METOAIB HA OCHOBI LUTYYHUX
HEeUPOHHUX MeperK. AHOHIMiI30BaHi BUBIPKM MeaUUHUX AaHUX Y BiAKPUTOMY AOCTYMi € HEYUCAEHHUMU, NPUYOMY cepes, HUX
3a3BMYaN He npeacTasaeHi neBHi cneundiyHi gocnigkeHHs. Lii paKTopu TaKoK € peneBaHTHUMM AnA abepauiii — ONTUYHUX
noxnboK NACbKOro okKa. [liicHo, aHani3 icHylounx nybnikauin AemMOoHCTPYe BKpail Many KinbKicTb AaTtaceTiB 3 abepomeTpuu-
Holo iHpOopMaLi€lo, B TOM Yac AK 6inblunii iHTepec ANA HayKOBOI CMiIbHOTU CTAHOBUTb 06P06Ka 0dpTaIbMONOTriUHUX 306parKeHb.
[iarHocTuKy ana Bu3HaueHHA abepauiil BUCOKUX NopAaaKiB pobnaaTb Heyacto, TOMy A8 OTPUMAHHA BeNUKUX 06cariB AaHUx
HeobXigHO 3anpoBagKyBaTU KamnaHii ANA AiarHOCTUKM HAaceNeHHsA, WO MoKe 6yTu 3aTpaTHMM 3 TOYKM 30py Yacy Ta KOLWITIB.
IHWKUM cNocob6oM € BUKOPUCTAHHA ICHYIOUMX METOAIB reHepauil AaHUX, TaKUX AK reHepaTMBHI 3MarasibHi HEMPOHHI mepexi
(Generative Adversarial Neural Networks, GAN). Btim, iXHe HaBYaHHA € HecTabinbHUM i, 32 Mmanux obcAriB AaHUX, BUHUKAE
PU3MK NnepeHaBYaHHA. binbw crabinbHuit Bug, GAN — Wasserstein GAN (WGAN) — BUKOPUCTOBYE iHLWIKMI NiaXig A0 BUSHAYEHHA
}YHKUil BTpAT Ta }KOpcTKe 06MeXKeHHA Bar nig, Yyac onTumisauii. OAHaK BiH TaKOXK Ma€ HeZ0/liKU: HanNnpuUKnag, obmerKeHHs Bar
BUMarae go04aTKoBUX 3yCM/Ib Ha Nia6ip Noporosoro 3HayeHHs, 60 B iHWOMY BMNAAKy iCHYE pU3UK BUBYXY ab0 3HUKHEHHSA rpa-
Aientie. Hegoniku WGAN ycyHyTO AoAaBaHHAM rpagieHTHoro wrpagdy (Gradient Penalty, GP). He3Bakaloum Ha BMCOKY CTabi-
NbHicTb HaByaHHA WGAN GP, po3mip HaBuYalouoi BUGIPKM TaKOXK rpae Ba*KAMBY PoJib B Nigrotosui mepeKi. 3 mertolo oro
HApPOLLYBaHHSA, L0 € aKTya/lbHUM AN HEYUCENbHUX HABYAIOUYUX BUMIPIOBaHb, BUKOPUCTOBYIOTbCA METOAM ayrMeHTaLii AaHUX
— YTBOPEHHA HOBUX MPMMIPHUKIB LUIAXOM 3aCTOCYBaHHA A0 HUX HECKNAAHUX nepeTBopeHb. OgHaK 3BUYaliHE 3aCTOCYBaHHA
ayrmeHTauii AaHUX npu HaB4YaHHi GAN He € NpuUNycTMMMM Yepes iHTerpauilo Lux nepeTBopeHb y 3reHepoBaHi NPUMiIPHUKW.
OpHUM 3 meToiB HaBYaHHA GAN, AKi 403BONAIOTb BUKOPUCTAHHA ayrMmeHTauii gaHux, € Data Augmentation Optimized for GAN
(DAG). He3Baxkatoum Ha Te, Wo 6inbwictb apxitekTyp GAN Ta CynyTHiX MeToAiB HaBYaHHA Ta HAPOLLYBAaHHA AAHUX ONUCaHi ANA
po6otu 3 iHpopmauielo y Burnagi 3o6parkeHb, Le He € NepenoHo Yy IXHbOMY 3aCTOCYBaHHI A0 BUpilLeHHA 3agadi reHepauii
abepomeTpuUUHUX AaHUX, afKe TaKa iHdpopmaLia moxe 6yTn npeacTaBneHa y ABox popmax — BekTopu KoediLieHTiB Ta nikce-
JIbHi 306paXkeHHA XBUNboBUX GPOHTIB. TaKUM UMHOM, 3agaueto AaHOT po6oTu € po3pobka meToay reHepauii abepomeTpuuHUX
baHux Ha 6a3i WGAN GP i3 3actocyBaHHAM DAG. 3anponoHoBaHe piweHHA € WGAN GP opuriHanbHOI apXiTeKTypu, Ana Has-
YaHHA AKOI BUKOPUCTOBYBA/IMCb METOAM HAPOLLYBaHHA AAHUX AK ANA rpadiuHoi popmm XBUAbOBUX PPOHTIB, TaK i A1 BEKTOPIB
KoediuieHTiB LiepHike. AHani3 pe3ynbraTy reHepaLiii 3a cnewianisoBaHMMM MeTPUKaMM CNaAKOBOCTI, TBOPYOCTI Ta PiSHOMaHITTA
NOKas3as., L0 3anponoHOBaHe PilleHHA 34aTHe CMHTe3YBaTU AaHi, L0 € CXOXMMM Ha peanbHi (BiacTaHb Ppewe gopisHioe 0.7),
i, AKi, BOogHOUYac, He KONiloKTb peasibHi BUMipPIOBaAHHA (MeTpUKa KpeaTUBHOCTI Ha PiBHi 92%), Ta He MalOTb BE/IMKOI KiNbKOCTI
CaMONOBTOPIB (3HAaYEHHA METPUKU PiSHOMAHITTA Ma€ 3HavyeHHsA 3.64, wo 6aM3bKo Ao ontumanbHo 3.83). Moaganbwi gocni-
AXXEHHA MOXYTb 6yTM HanpAmneHi Ha BUKOPUCTAHHA 6iNbll JOCKOHANUX ApXiTEKTYp LITYYHUX HEMPOHHUX MepexK, 3acobis
ayrmeHTauii aaHux ana GAN Ta nowyk abo cTBOpeHHs 6inblimnx HaBYatOUMX BUGIPOK.

Knruoei cnosa — opmanemonozis; ceHepamueHi 3mazanbHi Mmepexci; ayameHmauyisa 0aHux.
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