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Abstract—Micro-electrode array (MEA) systems are important for measuring extracellular field potentials (FP) of car-
diac cells, which is a crucial step in cardiotoxicity assessment. However, without modification, the MEA system is only capa-
ble of recording FPs. This limits the number of parameters for cardiotoxicity assessment only to FP parameters, while
the action potential (AP) parameters remain unused. To address this issue the MEA systems are often modified to use electro-
or optoporation to record the local extracellular APs (LEAPs), which allows to reliably quantify the AP morphology. As an
alternative to MEA modification and cell membrane stimulation the AP can be reconstructed mathematically.This study
explores how using additional parameters from reconstructed action potentials (RAPs), derived from FPs, can improve
the accuracy of k-NN machine learning models for drug concentration and potential cardiotoxicity classification. The k-NN
classifier was trained using combinations of FP and RAP parameters. The k-NN models were evaluated using five-fold strat-
ified cross-validation and cross-channel validation. Their performances were compared using error rate, macro precision,
macro recall and macro F1 score accuracy metrics. The results indicated that ncorporating RAP parameters into the feature
set increased the F1 score of k-NN model for DMSO concentration classification by up to 10.78% compared to the training
set with only FP features.

Keywords — extracellular field potentials; reconstructed action potentials; machine learning; k-nearest neighbours; cardio-
toxicity; classification; feature selection.

features these advanced technologies present. Machine
learning (ML) models can process and interpret large
datasets generated by LOC and MEA systems, encom-
passing a multitude of features that describe the FPs of
cardiac cells [4]. The number of features can range from
one to dozens, including various parameters of FPs such
as amplitudes, durations and frequencies. ML models
can be designed to focus either on the specific features

l. INTRODUCTION

Cardiac electrophysiology has traditionally relied on
manual interpretations of data, often leading to time-
consuming and potentially subjective analyses [1].
The introduction of Lab-on-a-Chip (LOC) and multi-elec-
trode array (MEA) technologies allowed to record
detailed extracellular field potential (FP) data from mul-
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tiple cardiac cells with high throughput as opposed to
patch-clamp technology, which recorded data from
a single cell [2]. The large amounts of high-dimensional
data may require an alternative data processing
approach [3].

Cardiotoxicity assessment, a cornerstone in drug
safety evaluation, requires precise and efficient analysis

methodologies to navigate the extensive array of

or on the patterns of FP cycles [5], providing a compre-
hensive view of cardiac responses to pharmacological
agents.

The integration of ML in cardiotoxicity assessment
presents several advantages. Firstly, it automates
the analysis process, significantly reducing the time and
labor involved in manual interpretations [6]. Secondly,
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these models can be improved over time with exposure
to more data, enhancing their predictive accuracy.

There are multiple approaches in cardiotoxicity clas-
sification using MEA systems with different benefits and
disadvantages. In some papers, researchers use manu-
ally determined parameters like FP duration (FPD), peak
FP amplitude (FPA) or short-term variability (STV) to clas-
sify the cardiotoxicity risk in recorded signals. This
approach requires signal processing to determine
the parameters and an expert to separate them into clas-
ses, but it also allows to employ more simple and inter-
pretable ML algorithms like k-Nearest Neighbours
(k-NN), Support Vector Machines or Random Forest [7].
The downside of the parameter-based classification is
that different data is sensitive to different parameters.
This problem requires additional data processing step in
feature selection to choose the best possible features
and discard the insignificant ones.

Cardiotoxicity assessment with MEA systems can be
performed using only FP recordings, but over time reser-
achers developed techniques to aquire other types of
electrophysiological data like the local extracellular
action potentials (LEAP) that could be used for high
throughput cardiac AP measurements [8]. Approaches
like this use electro- [9] or optoporation [10] to increase
the permittivity of the cell membrane. This allows
the extracellular electrode to record the potential from
the merged extracellular and intracellular spaces. How-
ever, these methods require modification of MEA sys-
tems with a laser for optoporation and with stimulating
electrodes for electroporation. As an alternative to inva-
sive methods the AP can also be reconstructed mathe-
matically from the extracellular FPs recorded with
unmodified MEA systems. The reconstructed APs (RAPs)
not only allows to expand the number of parameters for
cardiotoxicity assessment [11], but also can be used to
expand the number of features for ML applications.

This study focuses on integrating RAPs and their
parameters into ML models to automate drug concentra-
tion and cardiotoxicity assessment, with potential appli-
cations in LOC and MEA systems. The choice of the k-NN
model in this paper comes from its ease of implementa-
tion compared to other models and its ability to adapt
well to diverse data distributions without imposing
strong assumptions.

1. MATERIALS AND METHODS

The dataset for this study comprised FP recordings of
human-induced pluripotent stem cell-derived cardiomy-
ocytes (hiPSC-CMs), obtained using a micro electro coax-
ial guide (UECG) system, a platform for monitoring car-
diac electrophysiology [12]. The dataset encompassed
the effects of Dimethylsulfoxide (DMSO) and Sotalol on
cardiac cells. Signals for the DMSO-treated group were
recorded using 2 channels; each channel recorded 7 sig-
nals: one from control group and 6 with different

concetrations of DMSO (from 0.1 to 0.6%). The signals
with the concetraion of 0.2% DMSO were discrded
because of significant amount of artifacts, resulting in
total of 6 signals per 2 channels. In contrast, the Sotalol
dataset had 1 control group signal and 6 signals with dif-
ferent drug concentrations (1, 3, 7.5, 15, 30 and 60 nM),
but each recording was captured from a single electrode.

Data preparation involved processing of FP record-
ings to ensure applicability of the dataset for ML training,
feature extraction and class categorization. Processing
steps involved identification and removal of artefacts, fil-
tering of 50 Hz power supply noise using a complex filter
based on wavelet denoising and PCA [11]. Feature
extraction involved period separation and quantification
of key FP parameters, such as interspike interval (ISI), FP
duration (FPD) and maximum FP amplitude (FPA). Addi-
tionally, FP recordings with multiple channels (DMSO-
treated group) were used to mathematically reconstruct
the AP using the approach from [11] allowing to consdi-
der such parameters as RAP durations at 50, 70 and 90%
of the repolarization (RAPD50, RAPD70 and RAPD90) for
model training ( ).

For the cardiotoxicity assessment, both in vitro
studies and clinical trials rely on electrophysiological
parameters to provide biophysical information about car-
diac cells. The parameters measured in in vitro experi-
ments using patch-clamp or MEA systems are associated
with corresponding parameters in the clinical Electrocar-
diogram (ECG):

e Action Potential Duration (APD): in cardiac cells,
the duration of the AP is a time period during
which the cell’s AP goes through the phases of
depolarization and repolarization. APD is associ-
ated with the QT interval observed in ECGs.
The QT interval represents the time taken for
ventricular depolarization and repolarization.
Prolongation or shortening of the QT interval is
a key marker for the assessment of drug-induced
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cardiotoxicity, indicating potential risks for

arrhythmia [13].

e Field Potential Duration (FPD): in in vitro cardio-
toxicity assays like MEA systems, FPD has high
correlation with APD [14]. And just like with APD,
the prolongation or shortening of FPD, is associ-
ated with prolongation or shortening of the QT
interval.

e Interspike Inverval (ISl): in in vitro experiments
the ISI measures the time between consecutive
cardiac depolarization events, just like the RR
interval in ECGs, which denotes the time
between successive heartbeats. Alterations in
the RR interval (and ISI) can indicate changes in
heart rate and rhythm, providing essential infor-
mation on the compound's effect on cardiac
pacing and rhythm stability [15].

Each parameter measured in cardiac electrophysio-
logy studies has significance in assessing cardiac function
and potential toxicity. In [16] DMSO was studied using
parameters from both FP and AP, such as Resting Mem-
brane Potential (RMP), peak AP amplitude (APA), APD
and corrected FPD (FPDc) using Fredericka’s formula:

_ FPD
1511/3 :

The study [16] found that concentrations of DMSO
greater than 1% resulted in significant changes in these
electrophysiological parameters. At concentrations of
0.3% DMSO, the waveforms of both AP and FP were
recorded as irregular.

FPD

C

In [17] the assessment of Sotalol's cardiac toxicity
was focused mainly on FPD and the signals’ shape.
The study found that with increasing concentrations of
Sotalol, there was a prolongation of the repolarization
wave peak, which corresponds to the prolongation of
ECG T-wave. The prolongation of the repolarization wave
(or T-wave prolongation) is indicative of changes in
the cardiac repolarization process. Prolonged repolariza-
tion can lead to arrhythmias and is a critical factor in eval-
uating drug-induced QT interval prolongation, a well-
known marker of cardiotoxicity. It was also noted that
the offset point of the FPD remained similar across dif-
ferent Sotalol concentrations. This observation suggests
that while Sotalol affects the duration of repolarization,
it does not significantly alter the overall cycle length of
the cardiac action potential. These conclusions marked
FPD as an important parameter for cardiotoxicity assess-
ment of Sotalol.

The categorization into “high risk” and “low risk” car-
diotoxicity groups for DMSO was achieved by using
threshold values for FPD.,, RAP durations (RAPD) and
their STVs, based on established cardiotoxicity criteria
and the observed effects of the drugs at different con-
centrations [18]. Recordings that showed significant

deviations from the control group values, such as signifi-
cant prolongations or shortening in FPD. or RAPD (+10%),
or substantial variability between subsequent values
(£90%), were classified into the 'high risk' group. Con-
versely, recordings with parameters within the normal
ranges were categorized as 'low risk'.

k-NN is a classic method in supervised ML which
depends on the number of neighbouring datapoints (k),
the distance measure, and the distance weighting sys-
tem. For this study, the Euclidean distance was chosen as
the preferred metric for the numerical experiments,
based on its demonstrated high accuracy in similar appli-
cations in [19]. The training set was based on a selection
of manually identified parameters from the FP and AP
signals. Permutation feature importance was employed
to evaluate the impact of different features on k-NN's
accuracy, demonstrating the potential redundancy in
overly extensive feature sets. Therefore, only the most
influencal RAPD parameters were selected and com-
bined into differences RAPDgg.so0 and RAPDgg.70, Which
represent the specific phases of the RAP repolarization.

The performance of models trained on the datasets
was assessed using established metrics of accuracy,
macro specificity, macro sensitivity and macro F1-score:

e  Error Rate is calculated as the ratio of incorrectly
predicted observations to the total instances in
the validation set:

FP+FN
TP+TN+ FP+FN

Error Rate =

where TP —True Positives, TN — True Negatives, FP — False
Positives, FN — False Negatives.

e Macro precision is calculated by averaging
the precision of each class. Precision for each
class is the ratio of true positives (correctly pre-
dicted positive observations) to the total pre-
dicted positives (both true positives and false
positives) for that class:

. 1 <N -
Macro Precision = — E ., Precision;
N “~i=l
b

where N is the classes and

5
TP. + FP.

number of

Precision; =

e  Macro recall is the average recall calculated sep-
arately for each class. Recall for each class is
the ratio of true positives to the actual positives
(true positives plus false negatives) for that class:

1
Macro Recall = NZL Recall;

>
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e F1 score is a harmonic mean of precision and
recall, it computes how many times a model
made a correct prediction across the entire vali-
dation set. Macro F1 score averages all per-class
F1 scores:

1
Macro F1 Score = szil F1;

B

Recall; x Precision;

F1 Score; =2-

Recall; + Precision;
where .

The high recall values indicate the models' capability
to correctly identify true instances of specific class,
a critical aspect in the context of cardiotoxicity assess-
ment where missing a true instance can have significant
implications. On the other hand, the precision values
reflect the models' effectiveness in accurately classifying
instances into their respective classes, ensuring that
the predictions are reliable and minimizing the risk of
false alarms.

1l. RESULTS

Fig. 2 shows categorization of DMSO into cardiotoxi-
city risk groups based on normalized FPD. and STVgppe
thresholds, DMSO is widely known to be a non-toxic
compound [20], but the data shows that at the highest
concentration of 0.6%, when the FPD. and STVgpp. Cross
the thresholds the waveform contains FP alterations,
which may be a marker of cardiotoxicity. On the other
hand, Sotalol is a known antiarrhythmic agent [21], it is
used in treating certain types of cardiac arrhythmias, like
atrial fibrillation [22] and ventricular tachycardia [23],
but its capacity to prolong the QT interval at higher doses
can increase the risk of a potentially life-threatening
arrhythmia called Torsades de Pointes; additionally, as
a beta-blocker, Sotalol can have other cardiac effects
such as bradycardia. Comparison of FPD. and STVgppe
data for Sotalol shows that both FPD. and STVeppc cross
the cardiotoxicity risk threshold at the highest drug con-
centrations of 30 and 60 nM.

Reconstucting the waveform of the APs from FP
recordings afftected by DMSO compound using approach
proposed in [11] allowed to determine parameters like
RAPDso, RAPD79, RAPDg and their differences RAPDgp.50
and RAPDgy 79, Which allowed to further evaluate
the effect of DMSO on the electrophysiology of cardiac
cells. Fig. 4 supplements Fig. 1 with information about
the duration of a more specific phase of the RAP that
significantly deviates from the control group.

An evaluation was conducted on the performance of
k-NN models for classifying drug concentrations with var-
ious combinations of electrophysiological features
(Fig. 5). Assessment metrics included Rrror Rate, Macro
Precision, Macro Recall, and Macro F1 score. Results for
DMSO and Sotalol drug concentration classification using
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Fig. 2 Comparision of normalized FPD. and its STVepoc for different
DMSO concentrations, where color-coded dashed lines repre-
sent high cardiotoxicty risk threshold for the respective parame-
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Fig. 4 Comparision of normalized RAPDgo-s0 and its STVrarpso-so for
different DMSO concentrations, where color-coded dashed lines
represent high cardiotoxicty risk threshold for the respective pa-
rameters

different feature combinations are presented in Table 1
and Table 2.

For DMSO concentration classification the number of
neighbors k = 15 and for Sotalol concentration classifica-
tion k = 8. The k values were chosen based on the size of
the dataset and accuracy evaluation.

For DMSO concentration classification the RAPDqgg.s0
was selected because it showed the highest accuracy
among other RAPD features. The dataset was balanced
to represent all classes equally. The model was validated
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Fig. 5 Macro F1 score from 5-fold cross validation and cross-chan-
nel validation for different combinations of FP and RAP features
for k-NN model for DMSO concentration classificiation

using 5-fold cross-validation and cross-channel valida-
tion. In cross-channel validation the model was trained
on the dataset based on the first channel using
5-fold cross-validation and then each fold was validated
individually using the dataset based on the second chan-
nel.

For Sotalol concentration classification no AP could
be reconstructed, so only FP features were used for clas-
sification.

For cardiotoxicity risk classification the classes were
formed using threshold information from Fig. 2 and
Fig. 3. The highest concetration of DMSO (0.6%) was
labeled as having high risk of cardiotoxicity, while the rest
of he signals were labled as having low risk of cardiotox-
icity. The dataset was balanced using stratified cross-
validation to represent all variations of features from sig-
nals with different DMSO concentration. The number of
neighbors k=11 according to the dataset size and accu-
racy evalution. The model was valiadated using stratified
5-fold cross-validation and cross-channel validation.

Table 3 shows the metrics of the k-NN model for
DMSO cardiotoxicity risk classification. For this model
the RAP parameter RAPDqgg.70 showed the highest contri-
bution to accuracy among the other RAPD parameters.

V. DISCUSSION

The k-NN models, with a Macro F1 score of 0.9 for
drug concentration and an F1 score of 0.93 for cardiotox-
icity risk, show high accuracy in their respective classifi-
cations. For drug concentration classification increasing
the number of features results in increased classification
accuracy. Certain features are particularly effective at dis-
tinguishing different drug concentrations. The models in-
corporating RAPDgg.50 show higher Macro F1 scores of
0.85, 0.88, and 0.9, compared to a score of 0.79 for
the model without RAPDgso (Table 1). Some other
features like FPA can significantly vary in FPs recorded
from different channels, which may have negative impact
on the model generalizability. In 1-feature models that
use FPA the k-fold cross-validation shows Macro F1 score

of 0.67, but the cross-channel validation shows the score
of 0.33; cross-channel validation for models that use
combinations of features and include FPA also shows
a lower Macro F1 score compared to the models that ex-
clude FPA (Fig. 5).

TABLE 1 THE 5-FOLD CROSS VALIDATION ACCURACY METRICS OF K-NN MODEL
FOR DMSO CONCENTRATION CLASSIFICATION
USING DIFFERENT FEATURE COMBINATIONS

Error Macr.o Macro | Macro F1
Used Features Preci-
Rate . Recall score
sion
FPD 0.4657 | 0.4213 0.5353 | 0.4713
ISI 0.5176 | 0.5316 0.4817 | 0.5053
RAPD90-50 0.3265 | 0.7062 0.6742 | 0.6896
FPD, ISI 0.2029 | 0.7996 0.7952 | 0.7974
FPD, RAPD90-50 0.1176 | 0.8834 0.8817 | 0.8825
ISI, RAPD90-50 0.151 0.8595 0.8494 | 0.8544
15:(}))1)’ ISI, RAPDS0- 0.0961 | 0.906 0.9045 | 0.9052

TABLE 2 THE 5-FOLD CROSS VALIDATION ACCURACY METRICS OF K-NN MODEL
FOR SOTALOL CONCENTRATION CLASSIFICATION
USING DIFFERENT FEATURE COMBINATIONS

Error Macro Macro Macro F1
Used Features .

Rate Precision Recall score
FPA 0.2945 0.6887 0.7084 | 0.6982
FPD 0.2233 0.7768 0.7496 | 0.7626
ISI 0.384 0.6236 0.6189 | 0.6212
FPA, FPD 0.0758 0.92 0.922 0.9208
FPA, ISI 0.1566 0.8626 0.8508 | 0.8566
FPD, ISI 0.1699 0.8343 0.8236 | 0.8289
FPA, FPD, ISI 0.0671 0.9475 0.9287 | 0.9379

TABLE 3 THE 5-FOLD CROSS VALIDATION ACCURACY METRICS OF K-NN MODEL
FOR DMSO CARDIOTOXICITY RISK CLASSIFICATION
USING DIFFERENT FEATURE COMBINATIONS

Used Features Error Pt:ecu- Recall F1

Rate sion score
FPA 0.328 | 0.6802 0.6737 | 0.6769
FPDc 0.12 0.8852 0.879 0.8821
RAPD90-70 0.238 | 0.7774 0.7626 | 0.7699
FPA, FPDc 0.12 0.8842 0.8807 | 0.8824
FPA, RAPD90-70 0.186 0.8287 0.8139 | 0.8212
FPDc¢, RAPD90-70 0.094 | 09141 0.9095 | 09118
l;gA’ FPDe, RAPDIO- | 064 | 0.9423 | 0.9356 | 0.9389

The differences between RAPD values, such as
RAPDso.70 underscore the specific segments of the RAP,
each correlating with predominant ionic currents. For in-
stance, the RAPDgg.70 interval is used in quantifying the
modulation of I and Iy currents. If a drug does not spe-
cifically target these currents, the variation in
RAPDgo.70 might be minimal. Consequently, including
RAPDgg.70 as a feature in the model would have a limited
impact on enhancing its accuracy.

The inclusion of the RAP feature results in a marginal
improvement in the F1 score for the DMSO cardiotoxicity
risk classification model, increasing from 0.88 to 0.93
(Table 3). For the DMSO concentration classification
model, using the RAP feature leads to a more significant
improvement in the Macro F1 score, from 0.79 to 0.9
(Table 1), compared to using only FP features. It is
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Fig. 6 Macro F1 score from 5-fold cross validation for different
combinations of FP features for k-NN model for Sotalol concen-
tration classificiation

=
o
!

0.8

=
T
L

0.6

ation Macro F1 Score

0.4

v
0
H
=1
=

&)

Cross-channel validation Macro F1 Score

= 3 2 oA 2 2 =
B E 2 BE i s5f.g2
& a B oza @248 g8

& By By BN

= = = =

~ =] = ~

Feature Combinations

Fig. 7 Macro F1 score from 5-fold cross validation and cross-chan-
nel validation for different combinations of FP and RAP features
for k-NN model for DMSO cardiotixicity risk classificiation

important to note that the cross-channel validation
might show a bias towards models that incorporate
the RAP feature, potentially displaying enhanced accu-
racy. This bias could be attributated to the RAP features’
integration of data from both channel 1 and 2 during
the reconstruction process.

The paper's focus on particular drug concentrations
(DMSO and Sotalol) and electrophysiological features
may limit generalizability across different pharmacologi-
cal compounds. Future research could extend these find-
ings to a broader spectrum of drugs and explore
the integration of additional FP and RAP related features
that capture different aspects of drug-cell interactions,
along with experimenting with other models and their
hyperparameters to further refine the concentration and
cardiotoxicity risk classification performance.

CONCLUSIONS

The investigation into using additional parameters
from reconstructed action potentials (RAPs) derived
from field potentials (FPs) for drug concentration and
cardiotoxicity risk classification with k-Nearest Neighbors
(k-NN) algorithm indicates enchanced model accuracy.
The F1 score for the cardiotoxicity risk model increased
from 0.88 to 0.93, while the Macro F1 score for the con-
centration model rose from 0.79 to 0.9 compared to
the models that didn’t include the RAP features.

The k-NN model used a combination of manually
selected parameters from FP and RAP data. The initial
number of neighbors k was selected based on
the dataset size. Then, the models were fine-tuned by
evaluating the performance for different values of k in
the vicinity of the initial guess and selecting the k that
showed the highest accuracy.

The accuracy of the DMSO concentration classifica-
tion model was evaluated through 5-fold cross-validation
and cross-channel validation. The inclusion of RAP
parameters, specifically RAP duration (RAPD), in the fea-
ture set resulted in improvements of F1 score up to
10.78% compared to using only FP features. However,
the influence of RAP parameters such as RAPD, and dif-
ferences like RAPDgo.70 and RAPDgg.50, as features is con-
tingent upon how the drug affects the phases they rep-
resent.

Training ML models for classification tasks, such as
determining drug concentrations or assessing cardiac
toxicity, necessitates a significant amount of data, includ-
ing FP or AP recordings. The use of RAPs to expand
the dataset features offers a viable alternative for MEA
systems lacking electro- or optoporation capabilities.
The proposed AP reconstruction approach enables
the application of RAPs in various ML models like k-NN,
which rely on fixed parameters for features. Incorpora-
tion of RAPs into ML algorithms offers an approach for
assisting in the automation of cardiotoxicity assessment
in MEA and Lab-on-a-Chip systems, which serves as
a contribution to more efficient drug safety evaluations.
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ANnAa Knacmdikauii KOHUeHTpaUii npenaparTis
Ta PU3BUKY KapAIOTOKCUYHOCTI
3 BUKOPUCTAHHAM MoTeHUianiB No3akKNITUHHUX
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Kadepnpa enekTpoHHOI iHXeHepii

HauioHanbHUIM TEXHIYHWUI YHiIBEpCUTET YKpPaiHK

vy

"KWUiBCKMI NOMITEXHIYHMM IHCTUTYT imeHi Irops Cikopebkoro" R 00syn5v21
Kuis, YKpaiHa

AHomayia—Cuctemu 3 mikpoenekTpogHumu pewitkamu (MEP) Baxkausi Ans BUMipIOBaHHA NO3aKAITUHHUX NOTeHLUianis
nona (MNN) KNiTUH cepus, WO € BaXXIMBUM KPOKOM B OLiHLi KapAioToKcMuHocTi. OgHak, 6e3 mogudikauii BEP cuctema 3aatHa
peecTpyBaTh AnLLe NoTeHuianu nons. Lie o6meKye KinbKicTb napameTpiB A5 OLIHKM KapAiOTOKCUUYHOCTI AnlLe napameTpamm
NN, B TOl Yac AK napameTpu noteHuiany aii (MA4) 3anuwaloTbca HEBUKOPUCTAHUMU. [NA BUpilLeHHA uiei npo6aemu BEP cuc-
Temun moaudikyoThb, W06 BUKOPUCTOBYBATU €/1EKTPO- ab0 onNTonopauilo AN peecTpaLii 10Ka/bHUX NO3aKNITUHHUX NOTeHLia-
nis aii (INNA), wo Ao3BONAE OTPUMYBATU CUrHANU 3 AOCTOBIPHOIO Mmopdonorito M. 3 iHworo 60Ky, icHYe anbTepHaTUBa MOAU-
dikauii MEP cuctem, Wwo A,03BONAE YHUKHYTU CTUMYAALT KNITUHHOT MeMbBpaHM —— maTemaTUyHa peKoHCTpyKuia NA.

Y uboMy AOCNiAMKEHHI BUBYAETbCA, AK BUKOPUCTAHHA A0AATKOBUX NapaMeTpiB PeKOHCTPYMoBaHMX noTeHuianis aii (PNA),
oTpumanux 3 MMM, MoxKe NiABULLMTU TOUHICTb TAKMX MOZesieli MallMHHOrO HaBYaHHA AK k-Habauxkunx cyciais (k-NN) ana kna-
cudikauii KoHLEeHTpaLil IiKapcbKUX Npenaparie Ta PU3UKY iIXHbOT KAPAiOTOKCUUHOCTI.

Knacudikatop k-NN 6yno HatpeHoBaHO Ha KombiHauiax napameTtpis MM ta PMNA. MNepeBipka moaeneii 6yna nposegeHa 3a
ponomoroo nN&#39;ATMKpaTHOI NepexpecHoi Banigauii Ta miXKKaHanbHoi Banigauii. Akictb k-NN mogenei 6yna ouiHeHa 3a
A,0MNOMOrOI0 TAKMX METPUK TOYHOCTI IK YacToTa MOMMU/IOK, MaKpO BAY4YHICTb, MAaKpPO NOBHOTA Ta MakKpo F1-mipa.

Pe3ynbTath noKasanu, wo BrA4YeHHs PN/ napameTtpis go Habopy o3Hak nigsuwmno F1-mipy mogeni k-NN gna knacudi-
Kauii KoHueHTpauii Dymethylsulfoxide (DMSO) go 10.78% nopiBHAHO 3 Mogenamm, AKi 6yan HaTpeHoBaHi BUK/IIOYHO Ha O3Ha-
Kax 3 M.

Knr4voei cnosa — nosaknimuHHi nomeHyianu noas; pekoHcmpyliosaHi nomeHyianu 0ii; MawWuHHe HABYAHHSA; K-HAlibAUM-
Yux cycidie; KapoiomoKcu4yHicmb; Knacugpikayis; eubip o3HaK.
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