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Abstract—Obstructive Sleep Apnea Syndrome (OSAS) is a clinically significant disorder characterized by recurrent  
episodes of upper airway obstruction, manifesting as either apnea or hypopnea, predominantly occurring at the pharyngeal 
level. Despite the preservation of respiratory muscle function during these episodes, OSAS poses considerable health risks, 
including cardiovascular complications and cognitive impairment. In recent years, a growing body of literature has explored 
novel methodologies to discern and diagnose OSAS, with a particular focus on cardiac activity analysis through Heart Rate 
Variability (HRV). 

This study contributes to the existing literature by conducting a comprehensive HRV analysis aimed at identifying  
indicative patterns of sleep apnea. The analysis incorporates diverse parameters within both time and frequency domains, 
facilitating a nuanced understanding of the complex interplay between cardiac dynamics and respiratory disruptions during 
sleep. In an effort to enhance the interpretability of the data, various scaling and dimensionality reduction techniques, such 
as Principal Component Analysis (PCA), t-distributed Stochastic Neighbor Embedding (t-SNE), and Uniform Manifold  
Approximation and Projection (UMAP), were applied. 

The dataset utilized in this investigation comprises records from 70 patients, sourced from the Apnea-ECG Database on 
the Physionet platform. To discern the optimal classification model, several machine learning algorithms were employed 
after the dimensionality reduction, including k-Nearest Neighbors (k-NN), logistic regression, Support Vector Machine 
(SVM), Decision Tree, Random Forest, and Gradient Boosting. Intriguingly, the results demonstrate a remarkable 100% 
accuracy across all classifiers when utilizing the UMAP dimensionality reduction method. 

A distinctive feature of the proposed methodology lies in its amalgamation of machine learning techniques with HRV 
parameters post-dimensionality reduction. This approach not only enhances the interpretability of the complex physiological 
data but also underscores the potential applicability of the developed model in real-world scenarios for the detection of 
OSAS. The robustness of the proposed approach, as evidenced by its high accuracy rates, positions it as a promising tool for 
advancing diagnostic capabilities in the realm of sleep medicine. Future research endeavors may further refine and validate 
this methodology, paving the way for its integration into clinical practice and contributing to the broader landscape of sleep 
disorder diagnostics. 
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I. INTRODUCTION 
The text discusses Obstructive Sleep Apnea Syn-

drome (OSAS), a condition caused by recurring episodes 
of upper airway obstruction (apnea) or narrowing (shal-
low breathing) occurring at the level of the throat, with 
preserved respiratory muscle function [1], [2]. Conse-
quences of apnea and shallow breathing include wors-
ened blood oxygenation and awakening episodes (most 
remain unconscious), leading to sleep fragmentation. 
This results in daytime complaints and, in conjunction 

with recurring hypoxemia episodes and excessive sympa-
thetic nervous system activity, can lead to increased 
blood pressure with subsequent complications. 

The lack of oxygen activates a survival reflex, prompt-
ing the individual to wake up to restore breathing. While 
this reflex sustains life, it interrupts the patient's sleep 
cycle, hindering restful sleep and potentially leading to 
severe consequences, including cardiac strain with  
potentially fatal outcomes [1], [2]. 
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In recent years, increasing attention has been given 
to research on identifying apnea through the analysis of 
heart activity based on heart rate variability. Heart rate 
variability (HRV) is the fluctuation in time intervals  
between consecutive heartbeats. HRV indexes neurocar-
diac function and is generated by the interaction  
between the heart and brain, as well as dynamic nonlin-
ear processes in the autonomic nervous system. HRV is  
a property of interdependent regulatory systems acting 
on different time scales to help us adapt to environmen-
tal and psychological challenges. It reflects the regulation 
of autonomic balance, arterial pressure (AP), gas  
exchange, intestinal tone, heart and vessel tone related 
to the diameter of blood vessels regulating AP, and even 
facial muscles [3], [4]. 

In the study [5], HRV analysis was used to measure 
and assess the autonomic nervous system (ANS) function 
during normal breathing and apnea in two groups of sub-
jects. The results showed that compared to normal 
breathing, both simulated apnea (voluntary apnea) and 
actual apnea (sleep disorder) led to a significant increase 
in the average R-R interval duration, normalized power 
of low-frequency (LF) components, LF/HF ratio (where  
HF stands for high frequency). Meanwhile, the values of 
the root mean square of consecutive differences in  
RR intervals (RMSSD) parameter and normalized power 
of HF components significantly decreased, indicating  
a substantial enhancement of sympatho-vagal modula-
tion. The ANS balance underwent significant changes, 
and the fractal characteristics of the heart were strength-
ened [5]–[7]. 

HRV analysis for determining sleep apnea features 
can be conducted using various types of parameters. 
Time domain indices are easy to compute and intuitively 
understandable. Frequency domain indices are used to 
measure sympatho-vagal modulation. For instance, nor-
malized power of HF components can reflect relative  
vagal modulation, while normalized power of LF compo-
nents can reflect relative sympathetic modulation [5]–
[7]. In the study [5], apnea was defined as a cessation of 
breathing for longer than 15 seconds, although sleep- 
related breathing disorder studies typically use a thresh-
old of 10 seconds. 

The reasons why apnea leads to arrhythmia are  
diverse and complex. From an anatomical perspective, it 
has been established that inspiratory muscles in  
the lungs relax during apnea. Subsequently, the relaxed 
muscles cause an increase in intrathoracic pressure, hin-
dering venous return to the right atrium, reducing abso-
lute venous pressure. These low-level changes contrib-
ute to enhanced sympathetic modulation through low-
pressure baroreceptors, making the ANS imbalanced and 
ultimately leading to arrhythmia. This study investigated 
arrhythmia causes through changes in ANS function.  
Experimental results showed that during apnea, an  
increase in the average R-R interval indicated increased 

vagal modulation, while a decrease in RMSSD and nor-
malized power of HF, along with an increase in normal-
ized power of LF and LF/HF ratio, indicated a relatively 
enhanced sympathetic modulation and a disturbance in 
the initial ANS balance. Heart modulation is regulated by 
the ANS, and when normal ANS function is disrupted,  
abnormal heart rhythm forms, causing arrhythmia.  
Simultaneously heightened sympathetic and parasympa-
thetic modulations are also the most common triggers 
for arrhythmia, such as atrial fibrillation [5]–[7]. 

Most studies on detecting sleep apnea rely on super-
vised learning [8]. In these studies, oxygen saturation and 
ECG signals were used as biomedical markers for sleep 
apnea, as their correlation with apnea was observed – 
the research shows that heart rate and systolic blood 
pressure increase in response to apnea. Various decision 
tree classifier variants were employed to achieve an  
accuracy of 93%. PPG measurements were obtained 
from an SPO2 sensor and analyzed to calculate heart rate 
and respiratory effort. One of the best classification per-
formances, reaching 87%, was obtained when linear dis-
criminant analysis was used to combine SPO2 and PPG 
features. In other studies, accuracy reached 77.7%, com-
bining statistical and temporal features of SPO2 and PPG, 
incorporating age as a feature, and using these data as 
input for a SVM algorithm. The studies discussed in [8] 
emphasize that age is also an explicit parameter as it cor-
relates with cardiovascular health, and using age alone 
for detecting apnea can provide sufficient accuracy. 

This work presents the results of the analysis of HRV 
parameters using machine learning methods to identify 
sleep apnea features. The distinctive aspect of the pro-
posed approach is the application of machine learning to 
HRV parameters after reducing their dimensionality. 

I. MATERIALS AND METHODS 

A. ECG measurement and pre-processing 
The work utilized the Apnea-ECG Database from  

the PhysioNet platform [9]. This database consists of 70 
signals (35 for the training dataset and 35 for testing  
the algorithm), each representing a person's ECG during 
sleep with a duration of 7-10 hours, and they include  
annotated QRS complexes. The database also contains 
annotation files for the occurrence of apnea in the train-
ing set. Examples of rhythmograms for cases with and 
without apnea are provided in Fig. 1. 

During the preprocessing of RR intervals using  
the wfdb library [10], RR intervals longer than 3 seconds 
and shorter than 0.3 seconds were removed and  
replaced with their respective upper limits. Subse-
quently, spline interpolation of RR intervals was per-
formed to obtain a uniformly discretized time series with 
a sampling rate of 2 Hz. 
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B. Heart rate variability parameters 
For the interpolated RR intervals, indices of HRV in 

the time domain were calculated. These indices quanti-
tatively determine the degree of variability in the interval 
between beats, which represents the period of time  
between consecutive heart contractions (see Table 1). 

Measurements in the frequency domain allow for  
a qualitative assessment of the distribution of absolute 
and relative power in four frequency bands. The working 
group of the European Society of Cardiology and  
the North American Society of Pacing and Electrophysi-
ology (1996) divided HRV into ultra-low-frequency (ULF), 
very low-frequency (VLF), low-frequency (LF), and high-
frequency (HF) ranges (see Table 2). 

TABLE 1 TIME DOMAIN HRV PARAMETERS 

Parameter Dimension Description 

SDNN ms Normal-to-normal (NN) intervals 
standard deviation 

SDRR ms R-to-R (RR) peaks intervals standard 
deviation 

SDANN ms The standard deviation of the mean 
NN intervals for each 5-minute seg-
ment of a 24-hour HRV recording. 

SDNN in-
dex 
(SDNNI) 

ms The average value of the standard de-
viations of all NN intervals for each 
5-minute segment of a 24-hour HRV 
recording. 

pNN50 % The percentage of consecutive RR 
intervals that differ by more than 50 
ms. 

HR Max − 
HR Min 

bpm The average difference between the 
highest and lowest pulse within each 
respiratory cycle. 

RMSSD ms The root mean square of consecutive 
differences in RR intervals. 

HRV trian-
gular index 

- The integral of the density histogram 
of RR intervals, divided by its height. 

TINN ms The base width of the histogram of 
RR intervals. 

 

TABLE 2 FREQUENCY DOMAIN HRV PARAMETERS 

Parameter Dimension Description 

ULF power  ms2 Absolute power in the ultra-low-fre-
quency range (≤0.003 Hz). 

VLF power  ms2 Absolute power in the very low-fre-
quency range (0.0033–0.04 Hz). 

LF peak Hz Peak frequency in the low-frequency 
band (0.04–0.15 Hz). 

LF power  ms2 Absolute power in the low-frequency 
range (0.04–0.15 Hz). 

LF power  - Relative power in the low-frequency 
band (0.04–0.15 Hz) in normalized 
units. 

LF power  % Relative power in the low-frequency 
range (0.04–0.15 Hz). 

HF peak Hz Peak frequency in the high-fre-
quency band (0.15–0.4 Hz). 

 

Fig. 1 Examples of a rhythmogram in a normal state (bottom plot) and during apnea (top plot) 
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Parameter Dimension Description 

HF power  ms2 Absolute power in the high-fre-
quency range (0.15–0.4 Hz). 

HF power  - Relative power in the high-frequency 
band (0.15–0.4 Hz) in normalized 
units. 

HF power  % Relative power in the high-frequency 
band (0.15–0.4 Hz). 

LF/HF % The ratio of power in the low-fre-
quency (LF) to high-frequency (HF) 
band. 

 

In addition to the HRV parameters in the time and fre-
quency domains, spectra and rhythmogram spectro-
grams were also calculated. For the array of HRV param-
eter features, additional scaling and dimensionality  
reduction methods were applied to two main compo-
nents using the sklearn library [11]. These methods  
include linear dimensionality reduction based on princi-
pal component analysis (PCA) and T-distributed Stochas-
tic Neighbor Embedding (t-SNE), as well as uniform man-
ifold approximation and projection (UMAP) for approxi-
mation and projection of diversity. 

C. Machine learning models for HRV analysis 
The obtained data was divided into a testing set 

(20%) and a training set (80%). For solving the classifica-
tion task, the k-nearest neighbors clustering method 
from the sklearn library [11] was used, specifically  
the KNeighborsClassifier() class. This method is relatively 
fast and works well with high-dimensional data. Addi-
tionally, the logistic regression method from the sklearn 
library [11] was chosen, which is not typically used for 
classification tasks but can provide sufficient accuracy 
under certain data distributions. Furthermore, support 
vector machines, decision trees, and ensemble methods 
such as random forest and gradient boosting were used. 
The respective classes from the sklearn library [11]  
include SVC(), DecisionTreeClassifier(), Random-
ForestClassifier(), and GradientBoostingClassifier(). 

II. RESULTS 
Based on the accuracy comparison, the classifier 

based on gradient boosting of trees proved to be  
the best for the case of applying PCA. The scatterplot 
with the decision boundary is shown in Fig. 2.  

 

Fig. 2 A scatter plot with the depicted decision boundary for the classification of apnea (brown color) and the normal state (blue color) for 
the data calculated using the dimensionality reduction method PCA 

 

 

Fig. 3 Confusion matrix of the classification of apnea (0) and the 
normal state (1) for the data calculated using the dimensionality 
reduction method PCA 
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The obtained average accuracy of 94% for the provided 
test data and the obtained labels is a quite satisfactory 
result. From the confusion matrix (Fig. 3), it can be  
observed that the model more often makes mistakes in 
favor of the normal state. In other words, the majority of 
errors correspond to situations where an apnea episode 
was classified as a normal state, which is a significant 
drawback of such a classification model and component 
distribution. 

The dataset calculated using the t-distributed  
Stochastic Neighbor Embedding (t-SNE) dimensionality 
reduction method allowed training classifiers with signif-
icantly higher decision-making accuracy. The scatter plot 
with the depicted decision boundary is shown in Fig. 4, 

and the confusion matrix in Fig. 5. The highest accuracy 
of 100% was achieved with k-nearest neighbors and ran-
dom forest methods. However, it's worth noting that 
such high accuracy may also indicate overfitting of  
the model and may lead to low decision-making accuracy 
on real-world data, although on the test data, a 100%  
accuracy with 0 errors was maintained. It is also notewor-
thy that support vector machines, gradient boosting, and 
decision tree methods also demonstrated high classifica-
tion accuracy at 99.9%. 

The data preprocessed with the UMAP dimensional-
ity reduction method resulted in the highest decision-
making accuracy among the applied machine learning 
models. The scatter plot with the decision boundary is 
shown in Fig. 6, and the confusion matrix is presented in 
Fig. 7. All selected machine learning models achieved 
100% decision-making accuracy, which was maintained 
on the test dataset as well. It is worth noting that  
the obtained accuracy is due to sufficient separation of 
classes in the feature space, and consequently, the deci-
sion boundary is relatively simple and linear. 

The dataset formed by calculating Fourier transform 
coefficients and spectrograms yielded comparable accu-
racy to that obtained through dimensionality reduction 
using UMAP. However, since the dataset formed by cal-
culating Fourier transform coefficients and spectrograms 
differs in its distribution in space from other considered 
feature arrays, such an apnea detection algorithm may 
be less effective on other real-world data. However, this 
assumption requires experimental confirmation. 

 

Fig. 4 Scatter plot with the depicted decision boundary of the classification of apnea (brown color) and the normal state (blue color) for the 
data calculated using the t-SNE dimensionality reduction method 

 

 

Fig. 5 Confusion matrix of the classification of apnea (0) and the 
normal state (1) for the data calculated using the t-SNE dimen-
sionality reduction method 
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CONCLUSIONS 
The research presented in the paper investigates  

the classification efficiency of human rhythmograms to 
identify sleep apnea features. The study evaluates  
the performance of classifiers (k-NN, logistic regression, 
support vector machine, decision tree, and ensemble 
methods: random forest and gradient boosting) in com-
bination with dimensionality reduction methods (PCA,  
t-SNE, and UMAP). It is determined that the highest  
average accuracy (100%) can be achieved by applying 
non-linear dimensionality reduction using the UMAP 
method in combination with all the classifiers used. How-
ever, this comes at the cost of the longest computation 
time. Therefore, future work should focus on optimizing 
feature preprocessing without sacrificing accuracy. 
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Анотація—Синдром обструктивного апное під час сну (СОАС) є хворобою, що виникає внаслідок повторюваних епі-
зодів зупинки верхніх дихальних шляхів (апное) або їх стиснення (гіпопное), які виникають на рівні фарингею, з збере-
женою функцією дихальних м'язів. Останнім часом більше уваги приділяється дослідженням того, як ідентифікувати 
апное за аналізу серцевої діяльності на основі варіабельності серцевого ритму (ВРС). У цій роботі аналіз ВРС для вияв-
лення ознак апное виконується за допомогою різних типів параметрів у часовому і частотному доменах. Застосовано 
кілька методів шкалювання та зменшення розмірності, таких як аналіз головних компонент, t-розподілене вкладення 
стохастичної близькості  і рівномірну апроксимацію та проекцію різноманіття. Після цього було навчено низку класифі-
каторів: k-найближчих сусідів, логістичну регресію, машини опорних векторів, дерево рішень, випадковий ліс і градієн-
тне підсилення. З використанням даних від 70 пацієнтів з бази даних Apnea-ECG (платформа Physionet) досягнута точ-
ність 100% в усіх класифікаторах і методі зменшення розмірності на основі рівномірної апроксимації та проекції різно-
маніття. Особливістю запропонованого підходу є застосування машинного навчання до параметрів ВРС після змен-
шення їх розмірності, що може бути використано в реальних умовах для виявлення СОАС. 

Ключові слова: апное; машинне навчання; класифікація; зменшення розмірності; ознаки; біосигнали. 
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