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Abstract—The application of the theory of moments to distributed generation systems for the construction of a reducing
and predicting polynomial of the time distribution of entropy changes in time at the base interval is proposed. It is shown
that in order to improve the accuracy of forecasting, it is necessary to take into account the fractal nature of energy con-
sumption processes and use Rényi entropy in calculations. By taking into account the fractal nature of the energy consump-
tion process and the use of Rényi entropy in calculations, an increase in prediction accuracy by 11% is achieved, resulting
in the prediction of the time distribution of Shannon's entropy for power consumption with an error not exceeding 23%.
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l. INTRODUCTION

When considering the issue of efficient use of pri-
mary energy in distributed generation systems [1-3], it
should be taken into account that in accordance with
the Law of Ukraine “On Amendments to Certain Laws of
Ukraine on Improving the Conditions for Supporting
the Production of Electricity from Alternative Energy
Sources”, from 2022, full responsibility for the imbalance
of actual and forecasted electricity production schedules
is introduced for all producers with installations based on
renewable energy sources [4]. This creates economic
incentives to increase the accuracy of forecasting elec-
tricity generation and consumption schedules and con-
tributes to the development of the balancing capacity
sector.

The states into which the distributed generation sys-
tem, as a complex statistical open macrosystem, transi-
tions due to changes in the states of devices for convert-
ing electrical energy parameters are unequally probable
[5-9]. The main reason for the heterogeneity in probabil-
ity is the presence of several parallel existing distribu-
tions of energy generation and consumption [10]. For
distributed generation systems, the role of the function
that uniquely reflects the probability of the macrostate is
performed by the entropy divergence [11], which takes
into account not only the uniform but also the arbitrary
nature of the prior probability distribution. Numerically,
the entropy divergence is equal to the statistical distance

between the current and maximum permissible distribu-
tions of energy flows of generation and consumption and
is defined as the difference of the corresponding entro-
pies. Therefore, one of the main current tasks that arise
when studying the operating modes of distributed gen-
eration systems is the implementation of predictive con-
trol for entropy divergence based on the prediction of
the time distribution function of the entropy of
the power consumption.

1. CONSTRUCTION OF A FORECAST EQUATION
OF CONSUMPTION POWER BASED
ON INSTANTANEOUS TRANSFORMATIONS

Taking into account the analog of the Heisenberg
uncertainty principle in dispersed generation systems
[12] indicates the need to implement a two-channel con-
trol system for efficient use of energy in systems: 1) by
the maximum duration of the base interval to provide
the required level of energy for charging the drive; 2) by
the minimum duration of the observation interval to
ensure the required level of the maximum possible
energy obtained from installations based on renewable
sources. To ensure the efficient use of primary energy in
dispersed generation systems, the installed capacity of
the electrical energy storage device must be sufficient
both to provide an average value of power consumption
and to balance power at peak intervals consumption,
which requires an increase in the accuracy of both short-
term (at observation intervals Atj) and long-term (at
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the baseline interval T) forecasting of consumption
capacity, which is shown in

In various problems of the theory of random pro-
cesses, the theory of automatic regulation, and trans-
formative technology, the theory of moments induced by
the system is used for the problem of predicting time

o0
series, {tk} which are parameters of spectral charac-
0

teristics of signals [14]. Considering the widespread use
and traditionality of moments induced by the system, as
well as the unevenness of graphs of power consumption,
we will consider the possibility of applying the theory of
moments to predict entropy consumption capacity in
systems with installations based on renewable energy
sources.

Moments, according to Stiles [15] at the i-th observa-
tion interval At; (see Fig. 1) are defined as functionals:

mj. = [tdoi(t), (1)
0

where k=0,1,2,..., m,"( isthe moment of the k-th order
for the function oft), do(t)=c'(t)dt=f(t). In
the classical problem of moments, it is necessary to find
a function o(t) that is defined by a sequence of numbers
m,{, k=0,1,2,... if the function of(t) is discrete, then
the formula for calculating moments is as follows:

(i7)" flix), (2)

my =

VE

i=0

where i e (0...oo) is the reference number.

Applying the moment transformation to restore
probabilistic processes of energy consumption in dis-
persed generation systems at the base interval T =r-At
(see Fig. 1) and considering f(it) Shannon's entropy as a
function, we get an expression describing the time distri-

bution of probabilistic moments m]. {f(p)}:

r q
mf = T ( jT)k x| =Y p"(it, jT)Inplit, jT)], (3)
j=0 i=0
where k=0,1,2,..., f(p)=Inp is the function of the dis-
crete argument; p(it) — distribution of the probability of
the process of energy consumption in time at each of
the i observation intervals At; g — the number of
power consumption measurements at each observation
interval At; my = plnp is a probabilistic moment of zero

order, corresponding to Shannon's informational
entropy. That is, Shannon entropy is used to restore
energy consumption processes in dispersed generation
systems at the base interval T .

To restore f(p) the argument p function by its vec-

tor m] {f(p)}, the inverse moment transformation is

used @' {my} :

K
fP)= Y ek i (p), (4)

k=0
where K <N, ¢, are the corresponding numerical coef-

ficients, (pk(p)e{(pk(p)}g are the basic functions
satisfying the condition

Y _o(p)pe(0,1) I_|m, {ox(p)}| < [14]
k=0,K n=0,N
considers the conditions that the system of reducing
functions must meet, and shows that these conditions
correspond to the orthogonal system of Legendre poly-
nomials, the elements of which are calculated in accord-
ance with the expression [16]:

k
Pelp) =[%jd:p)k (v -p), (5)

where k=0,1,2..., pe(0,1),P.(p) is the k element of

the system of Legendre polynomials, reduced to
the interval (0,1). Note that multiplying each element

P.p) by 1/~/2k+1, we get an orthogonal system

{P (p)}°0O ,PL(pP)=P(p)/~2k +1, the elements of which
fork=0,1, 2,3, 4are given in Table 1, and the matrix of

images WL{( —inTable 2.

TABLE 1 LEGANDRE POLYNOMIALS

Element of the system Equation

Py (p) 1

Alp) 2p-1/+3

7 (p) 60> —6p+1)/~/5

P(p) (20p° ~30p% +12p-1) /7

P! (p) 4 3 2 \/’
4 (70p" —140p™ +90p” —20p+1) /N9
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TABLE 2 MATRIX OF IMAGES

1 0 0 0 0

! I 0 0

2 2\/;

SN I S B U R

3 w3 | 65

1 33 1 1 0

4 20 | afs | 207

S I S I T O U
5 5\/5 7\/E 10\/; 70/9

The given image matrix allows you to reconstruct
a function describing the change in Shannon entropy
f(p) along the fourth-order momentum vector

my {f(p)} using formula (4), where o (p') =P (p) .

Restoration of the time dependence of moments at
observation intervals for the entire base interval allows
you to forecast a certain base interval to ensure the effi-
cient use of primary energy by correcting the storage
capacity.

Demonstration of the described approach will be
considered as a specific example of entropy distribution
forecasting. As initial data for calculations, data on
the power consumption of a private house obtained
from 2007 to 2010 with discreteness of 10 minutes are
used [13]. The base interval is equal to a day. To calculate
probabilistic moments, it is necessary to obtain a proba-
bility distribution p; process of consumption in time, for

which the probability density is estimated in the form of
a histogram according to the following algorithm:

and maximum x, ele-

1. The minimum x max

min
ments of the sample implementation are deter-

mined.
2. The range of variations is determined
A= Xmax — Xmin -

3. The number of histogram intervals is determined
according to the Sturgess formula [17]
K~1+3,32lgN, where N is the sample size.

4. The histogram step is determined Ax:%.

5. The frequencies of the elements of the N(Ax)

sample implementation in each of the histogram
intervals are calculated.

6. For each histogram interval, columns are drawn
. . . N(Ax)
with a height of p(x)=———-.
N-Ax
Then the probability of the element of the sample im-
plementation falling x; into the corresponding histo-
gram interval is determined by the formula:

_ N;j(Ax)
p(x;) BT (6)

and Shannon's entropy according to the formula:

H==2"p(x;)Inp(x;), (7)

1

where the entropy values are calculated at the end of
each hour.

At the same time, the probabilities p(x;) of the ele-
ment of the sample implementation falling x; into

the corresponding histogram interval have a logarithmic
dependence on the sample size N, and the Sturgess for-
mula determines the number of quantization levels.

The results of the calculation of probability values,
Shannon entropy, and probability density histogram for
May 13, 2010, are given in Table 3.

Probability density histogram is shown in

TABLE 3 RESULTS OF THE CALCULATION

TZ80CZEB_W SSy-€7S¢/SESOT 0T 10d

Time in- ' Power, - Shannon Renyi
Time Probability en-
terval kw entropy
tropy
0 00:00 248,04 0,625
1 00:10 270 0,625
00:20 ;102,44 0,625
3 00:30 325,84 | 0,625
4 00:40 250 0,625
139 350,68
23:10 5 0,041667
140 . 362,98
23:20 8 0,041667
141 23:30 298 0,041667
142 . 401,46
23401, 0,041667
143 23:50 294 0,041667 1,763 5,0405
R
0,7
0,6
0,5
0,4
03
0,2
01
0
0 1000 2000 3000 4000 5000
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TABLE 4 CALCULATED VALUES OF PROBABILISTIC SHANNON

Moment Value
40,986
Mo
484,088
mlT ’
T 7433,809
m
T 128663,896
m3
T 2384076,562
My
The values of the first five probabilistic moments mg

, mlT, sz, mgT,, mZ, calculated on the base interval
according to formula 4 are given in Table. 4.

The technique for restoring the entropy distribution
using the Legendre system of polynomials is as follows.

1. The numerical coefficients of the series are cal-
culated ¢, by multiplying the matrix of images

WS by the vector of moments m] {f(p)}:

40,986
1,606-10°

K\ o\ 4
ck=(W4) -(mk) ~|9,333-10
6,233-10°

4,486-10°

2. The found vector of numerical coefficients is
multiplied by the Legendre system of polynomi-
als, and the reducing polynomial is obtained:

f(p)=1,1116-10" - p* ~2,2183-10"° - p° +
+1,4217448-10'0 - p* —
~3,146336-10° - p+1,56349 - 10°

3. The restored temporal distribution of entropy is
obtained by substituting the values of probabili-
ties for the selected day into the resulting poly-
nomial.

shows the calculated from real data (blue
curves), restored (orange curve) and predicted (green
curve) time distributions of Shannon entropy for power
consumption for two days: May 13 and 14, 2010. Fore-
casting for the next day uses power data for the previous
day.

The mean absolute percentage error (MAPE) of
the recovery of the time distribution of Shannon's
entropy using moment transformations, calculated by
the formula [18]:

1 N |H; —H;

MAPE :—Z'L—"-loo%, (8)
i=1 i

where H; and H; are the real and restored values of en-

tropy, respectively, for the example under consideration,

r
H Reconstructed |
g | r 4 3 A |
& B & o B 5@ & &' » _.O @ \ ) L ]
- - |
v w |
1 |
05 |
0 |
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2
t, hour 1
H Predicted
2,3
— e
B 8 ’
/ 7 X < %
1 h‘ / il > A " ;.
15 +—a—s ¥ oo o v LY .y
; W
05 -
o 12
t, hour

is 9.08%, and the average absolute percentage error of
forecasting is 22.53%.

Thus, the error of reconstructing the time distribution
of Shannon entropy for consumption power using
the theory of moments does not exceed 10%, which
allows us to use the described approach to predicting
the temporal distribution of entropy of consumption
power in dispersed generation systems.

1. TAKING INTO ACCOUNT THE FRACTAL NATURE
OF THE ENERGY CONSUMPTION PROCESS

Studies have shown that improving the accuracy of
forecasting power consumption is achieved by consider-
ing the fractal nature of the energy consumption process
[19], which requires moving from the calculation of Shan-
non's entropy to the calculation of Rényi's entropy when
predicting power consumption.

Given the fractal dimension of the power consump-
tion curve, the Rényi entropy values are calculated using
the formula:

R(D) = —| oo 9
()—1_Dn§pf, (©)

1
where D= lim Iogn(s)/log(—j is the fractal dimension
€

e—0
of the studied power consumption curve; ¢ is the size of
the unit cell, and is n(g) the number of such cells
required to cover the power change curve.

The calculation of the fractal dimension is carried out
by the cell method [20], the essence of which is that
when calculating the fractal dimension, instead of balls,
a set of rectangular grids with different cell sizes is used,
mainly in the shape of a square. For each grid, the num-
ber of cells covering at least one point of the broken line
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of the electricity consumption graph is calculated n(g;)
from the size of the cell ¢;, wherei=1, 2, ... corresponds

to the nature of the mesh in this set. Next, for this
dependence, a graph of the function is plotted

logn(e;) = f(log(e;)) on a logarithmic scale. The points
marked on the graph are approximated by a straight line
using the method of least squares. The resulting equa-
tion of the line has the form:

logy =—klogx+b, (10)

where x and y are logarithmic coordinates, and the posi-
tive value of the parameter k corresponds to the value of
the fractal dimension D of the time series of power con-
sumption.

,a—d shows an example of superimposing a grid
with cells of different sizes on the graph of changes in
power consumption for May 13, 2010. The initial mini-
mum cell size is chosen as not less than the smallest dis-
tance between two adjacent numerical values of
the time series. The minimum difference between
the two values for the selected date is 68. Then we find
the cell size —for this, we convert the hours into minutes.
As a result, we have the time value in minutes from 0 to

A ATTFERR

1440 minutes along the abscissa axis and the value of
power consumption along the ordinate axis. Then, along
the ordinate axis, select a size not less than 68, and in
accordance with the abscissa axis, we find the size along
the abscissa axis, to eventually get a grid in the form of
a cell. As a result, we have the cell size along the ordinate
axis gy = 100, and along the abscissa axis ¢, =10. Next,

we select the value of the step along the abscissa axis,
where it is worth choosing by the number of levels cov-
ered by the grid cells, that is, the number of values falling
into one level. €, & to get two points to the same

level.

Table. 5 shows the results of calculating the number
of cells for each step (sy = 30, 60, 90, 120, 150) and

the total number of cells, as well as the logarithms of
these values.

TABLE 5 CELL COUNT VALUE FOR EACH CELL RESIZING STEP

Cell size Number of cells
€ log(g;) n(e;) log(n(g;))
30 5,704 139 4,935
60 6,397 59 4,078
90 6,802 40 3,689
120 7,09 26 3,258
150 7,313 19 2,944

shows in logarithmic coordinates a graph of the
dependence of the number of cells log(n(g;)) on their
size log(g;) for the time series of changes in consump-
tion power for May 13, 2010 and its approximation by a
straight line using the method of least squares.

The equation of approximation of the graph of
the dependence of the number of cells on their size is as
follows:

y=-1,2166-x+11,885,

where the positive angular coefficient corresponds to
the value of the fractal dimension, and the high quality
of the approximation is confirmed by the value of the co-

efficient of determination close to one R? = 0.9963.

The fractal dimension of the time series

o

~
/

~

y=-1.2166x + 11,885
R2=10,9963

Number of cells  log N(e)

>—~
w

Cell size log(e)
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R(D) Reconstructed

5 = = == | Y

» f \

RM Predicted
?""-ﬁ - = B o -~
Fan )
il 2 e
s gy
3 S': AV w_ o
*"—r—— L "! -__»
Wi \ 4 1"
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Reducing the polynomial of the Rényi entropy distri-
bution using probabilistic moments calculated by the for-
mula:

1
1-D

.
mp =T (JT) x
j=0

It looks like this:

d D
lnzp (it, jT) |, (11)
i=0

f(p)=2,7206666 10" - p* —5,4295935-10'° - p° +
+3,480449-10™ - p? —
~7,70347969-10° - p +3,828930223-10°

Substituting the values of probabilities into
the obtained polynomial, we get the restored and pre-
dicted time distributions of Rényi's entropy in for
two days: May 13 and 14, 2010.

The mean absolute percentage error of reconstruct-
ing the time distribution of Rényi's entropy using
moment transformations for the example under consid-
eration is 8.35%, and the percentage error of forecasting
is 20.12%, which increases the accuracy of the forecast
compared to the use of Shannon entropy.

When using traditional approaches to predicting
the temporal distribution of entropy of Shannon and Ré-
nyi using neural networks, the prediction errors do not
exceed 15%, which allows us to use the described
approach to predicting the temporal distribution of
entropy of power consumption based on the theory of
moments in dispersed generation systems. The disad-
vantage of neural network-based prediction models is
the need to train the model on significant amounts of
training data. Model training also requires the correct
selection of learning parameters, such as the number of
learning epochs, the initial degree of learning, the num-
ber of cells in the neural network, etc. Although the fore-
casting method proposed in the article has a slightly
higher error of 20%, it is much easier to apply and can
operate with less training data.

CONCLUSION

Applying the theory of moments to construct a reduc-
ing and predictive polynomial allows, with an error not
exceeding 23%, to predict the time distribution of Shan-
non's entropy for power consumption. An increase in
prediction accuracy of 11% is achieved by considering
the fractal nature of the energy consumption process
and the use of Rényi entropy in calculations.
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HaLioHaNbHMM TeXHIYHMI yHiBEPCUTET YKpaiHU "KUiBCbKMI MONITEXHIYHMI IHCTUTYT imeHi Irops Cikopcbkoro” R
00syn5v21

Kuis, YKkpaiHa

AHomayia—Y ujiii cTaTTi 3aNPONOHOBAHO NiAXiA A0 NPOrHO3yBaHHA YacoBOro pPo3noginy eHtponii LLleHHOHA Ta PeHbi Ha
OCHOBI 3aCTOCYBaHHA Teopii MOMeHTIB. 3aNpONOHOBaHO 3aCTOCYBaHHA iMOBIPHICHUX MOMEHTIB A4 nobya0BuM BiAHOBNOKYOro
Ta NPOrHO3yHUOro NoJIiIHOMY YacoBOro pPo3noainy 3miHM eHTponii Ha 6asoBomy iHTepBani. MoOKa3aHo, WO ANA NOKPALLEHHSA
TOYHOCTi NPOrHO3yBaHHA HeobXigHO BpaxyBaTu ¢(paKTasbHy NPUPOAY MPOLLECIB CMNOXKMUBAHHA EHeprii Ta Npu po3paxyHKax
BUKOPUCTOBYBATM eHTponito PeHbi. MOKa3aHo, WO OAHIEID 3 OCHOBHUX aKTya/IbHMX 33aAad, AKa BUHMKAE NPU AOCAIAXKEHHI
pexxumis po60TH cucTem po3ocepeaKeHoi reHepalii € peanisauis ynepea)XyBasibHOrO KepyBaHHA 32 EHTPONIHOO ANBEpreH-
Li€l0 Ha OCHOBI NPOrHo3yBaHHA GYHKLii YacOBOro po3noginy eHTponii NOTYXKHOCTI CNoXMUBaHHA. [Ana 3a6e3neueHHA epeKTUB-
HOTO BUKOPUCTAHHA NEePBUHHOT eHeprii y cucTemax posocepeaKeHoi reHepauii HeobxigHo, Wo6 BcTaHOBAEHa EMHICTb HaKoNU-
yyBaua eNeKTPUYHOI eHeprii byna AOCTaTHLOIO AIK ANA 3a6e3neyeHHA cepeHbOro 3HaYEHHA NOTYXKHOCTI CNOXMBaHHA, TaK i ANA
6anaHcyBaHHA NOTY)XXHOCTI Ha iHTepBanax NiKOBOro CNOXKMBAHHA, WO NOTPebye NiABULLEHHA TOYHOCTI AK KOPOTKOCTPOKOBOrO
(Ha iHTepBanax cnoctepeXKeHHs) TaK i A0BroctpokoBoro (Ha 6a3oBoMy iHTepBani) NPOrHO3yBaHHA MOTYXHOCTi CNOXKUBAHHA.
HaBegeHo BMpas, W0 ONUCYE YaCcOBUIA PO3MOAiIN iMOBIPHICHUX MOMEHTIB Ha 6a3oBOMy iHTepBani, po3rnaaalum B AKOCTI PyHK-
uii f(it) entponiio LLleHHoHa. HaBeaeHO popmyny 3BOPOTHOrO MOMEHTHOTO NepeTopeHHsA. HaseaeHo BUpas, BiaNoBiaHO A0

AIKOro PO3PaXOBYIOTbCA €/1eMEHTU OPTOroHa/IbHOT cMcTeMU NoniHOMIB JlexkaHApa, AKi BAKOPUCTOBYIOTbCA B AKOCTI CUCTEMMU BiA-
HoBAKOOUYMX YHKLIN. HaBegeHO maTpuuto 306parkeHb, WO A03BONSE BiAHOBUTU YHKLIO, WO oNucye 3miHy eHTponii LLleH-
HOHa 332 BEKTOPOM MOMEHTIB YeTBEPTOro NnopaAKy. BiagHOBAEHHA YacOBOI 3a/1€}KHOCTi MOMEHTIB Ha iHTEPBaNaX CNOCTepeXKEHHS
AnA Bcboro 6a30Boro iHTepBany A03BONAE BUKOHATU NPOrHO3yBaHHA HA AeAKUA 6a30Buii iHTepBan anA 3abesneyeHHs edek-
TUBHOIO BUKOPUCTAHHA NEPBUHHOI eHeprii 3a paXyHOK KOpeKLii EMHOCTi HAaKonuuyBaya. Po3riaHYTO 4eMOHCTPaL,il0o ONUCAHOro
niaxoAy Ha KOHKPETHOMY NMPUKAAAi NPOrHO3yBaHHA YacoBOro po3noAiny eHtponii. lna po3paxyHKy iMOBipHICHUX MOMEHTIB,
HeobXigHO OTpMMaTK Po3NoAin iMoBipHOCTel NpoLecy CNOXMBAHHA Y Yaci, 41A YOro HaBeAEeHO a/IrOPUTM OLHKM LWiNbHOCTI
imosipHocTi y BUrnagi ricrorpamu. OnmMcaHo MeToAuKy BiHOBAEHHA PO3N0AiNy eHTPOonii 3 BUKOPUCTAHHAM CUCTEMMU NONTHOMIB
NexaHapa. HaBegeHo YacoBsi po3noginm eHtponii LLIeHHOHa ANA NOTYXKHOCTI CNOXKUBAHHA ANA ABOX A4i6. MoKpaLeHHA TOYHOCTI
NPOrHO3yBaHHA NOTYXHOCTi CNOXMUBaHHA AOCATAETbCA WAAXOM BPaxXyBaHHA ¢ppaKTanbHOI NPMPOAM NPOLECcy CNOXUBAHHA eHe-
prii, wWo notpebye nepeiiTn Big po3paxyHKy eHTponii LLiIeHHOHA A0 po3paxyHKy eHTponii PeHbi. ONUCaHO CyTb KNITUHKOBOTO
meToAy, 3a AKUM Bif6yBaETbCA PO3PaXyHOK PPaKTaNbHOIT PO3MIPHOCTI KPUBOT NOTYXKHOCTI cnoXuBaHHA. HaBegeHo dopmyny
ANA pO3paxyHKy Bi4HOBAIOKOYOro NoAiHOMY Po3noAiny eHTponii PeHbi 3 BUKOPUCTaHHAM iMOBipHiICHUX MOMeHTiB. . HaBeaeHo
yacoBi po3noainu eHTponii PeHbi A1A NOTYXKHOCTI CNOXXUBAHHA A4N1A ABOX Ai6. OTpMMaHa TOYHICTb NPOrHO3yBaHHA [,03BONAE
BMKOPUCTOBYBATK ONMUCAHUI NiAXig A0 NPOrHO3yBaHHA YaCOBOro PO3MNOAiNY EHTPONii NOTYXKHOCTi CNOXKMBAHHA HA OCHOBI Teopii
MOMEHTIB y cUCTEeMaXx po3ocepeaKeHoi reHepadiii.

Knr4oei cnoea — cucmemu po3ocepediceHoi 2eHepayii; eHmponia LLleHHOHa; eHmponis PeHoi; ¢ppakmanvHa po3mip-

Hicme.

2025 Cepgnapos €. B., KneH K. C.
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