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Abstract—The article is focused on the development of Siamese neural network models for ECG signals classification
that reflect cardiovascular pathologies, including arrhythmias, in the context of a limited amount of training data.
The problem of a shortage of training data in machine learning for diagnosing heart disease is associated with a wide variety
of pathological states and insufficient information for certain classes in open medical databases. The study aims to develop
a complex method based on the combination of high-resolution electrocardiography and vectorcardiography with Siamese
neural network architectures and training methods, which makes it possible to improve the accuracy of cardiac arrhythmias
classification. The peculiarity of the proposed method, which is based on the ability of Siamese NNs to compare, is to detect
and analyse the differences between the ECG signal under study and the generated reference feature vector of signals with
pathology, which allows to effectively identify signal changes even for those diseases that are limitedly represented in
the training dataset. In addition, to improve the efficiency of training, a method for generating a reference feature vector for
pathological signals was developed. This vector is used by the Siamese neural network for comparison. The application of
the principal component analysis (PCA) method allowed to extract key features from 100 ECG signals with pathologies,
which contributed to the creation of a reference feature vector with a minimum number of training samples. Additionally,
for each input ECG signal and reference feature vector, an average cardiac cycle was calculated, which helped to identify
low-amplitude ECG components and features of the QRS complex. To implement the developed complex method, the PTB-
XL database was used, which contains 12-channel ECG records classified into 70 disease categories. To reduce the impact
of data imbalance, augmentation methods, as well as preprocessing methods were used to remove noisy signals and selec-
tively reduce overrepresented classes. Two models of Siamese neural networks (NN) were developed as part of the study.
The first model is focused on detecting low-amplitude pathological components of ECG signals, in particular, late atrial and
ventricular potentials. The second model is designed to classify 18 types of arrhythmias and 19 associated pathologies, such
as coronary heart disease, hypertrophy, and myocardial infarction. The effectiveness of the proposed NN specialised ECGnet
network models was evaluated by comparing them with the specialised ECGnet network in the task of recognising late atrial
and ventricular potentials. The first model exceeded the accuracy of ECGnet by an average of 10% and reduced the proba-
bility of false negative predictions. The second NN model for multi-class classification, which covered 37 diagnostic classes
with rare diseases with less than 200 observations, exceeded the average accuracy of ECGnet by 10%, reaching a maximum
increase of 28%. The obtained results allow to outline further ways to improve the complex method. In particular, improving
the accuracy of ECG signal classification with pathologies is possible by using additional transformations of input features
and methods of amplifying low-amplitude signal components.

Keywords — electrocardiography; Siamese neural networks; late ventricular potentials; late atrial potentials; cardiac
arrhythmia; vector cardiography; singular value decomposition.

| INTRODUCTION fully describe the variance of real diagnostic cases. Con-
sequently, such systems are most often trained to detect
common subgroups of diseases, for example, coronary
heart disease, arrhythmia [3]. A more specific diagnosis
may not be accurate enough due to the growing diversity
between groups when analysing ECGs. As a result, more
training data needs to be used to improve accuracy.

Nowadays, various types of neural networks (NN) are
actively used in automated diagnostic systems [1]. Usu-
ally, automated systems can make decisions and perform
diagnostics using much less input data than is necessary
for a doctor. This aspect of neural networks exists
because of their high ability to identify hidden features
and patterns, but it can cause false results due to overfit- Analysed ECG signals may have different degrees of
ting [2]. To avoid such cases, it is necessary to use Pre-processing, different sampling rates, number of
datasets with a large number of observations that could  leads, and high levels of noise. Due to the large number
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of cardiac diseases that can be simultaneously mani-
fested in a single ECG record, the interpretation of such
signals and diagnosis becomes complicated [4]. Unfortu-
nately, due to the large variety of cardiovascular pathol-
ogies and their combinations, it is currently difficult to
create training samples with the required amount of
data. To solve this problem, approaches are being devel-
oped to improve training efficiency with a limited
amount of training data [5], [6].

In addition to analysis of the classical ECG signal com-
ponents with an amplitude range of 0.1 - 1 mV and fre-
quencies in the range of 0. 5 - 40 Hz, to detect life-threat-
ening tachyarrhythmias at early stages, low-amplitude
ECG signal components can be analysed, namely, ventric-
ular late potentials (VLP) and atrial late potentials (ALP)
with amplitudes of 1 - 40 uV and frequencies of 40 -
250 Hz. Such components are usually detected by high-
resolution electrocardiography (HR ECG) [7].

Another promising application of automated NN sys-
tems is digital medicine, where patients can receive basic
diagnostics at home without wasting time in hospital
queues and significantly reducing the healthcare cost [8].
The introduction of such systems would help to predict
life-threatening conditions of the cardiovascular system
and allow for timely medical treatment.

To improve the quality of biomedical signal classifica-
tion, Convolutional layers are used in the architecture of
neural networks. These layers analyse the morphological
features of signals, which allows to analyse them at dif-
ferent levels of detalisation [9]. In addition, recurrent lay-
ers are used to analyse sequences, especially long-term
signals. The use of these layers allows to extract time-
dependent features from signals and, as a result, reduce
the required amount of data for high-quality training
[10].

For specific diagnostics tasks, combinations of differ-
ent layers are used to create universal architectures.
The ResNet neural network architecture is focused on
detecting complex patterns in signals [11]. There are also
specialised architectures for recognising certain types of
data. The ECGNet architecture has special architectural
solutions for detecting features in the ECG using various
Convolutional layers and built-in attention mechanisms
aimed at different signal components [12].

Siamese neural network architectures perform well
when there is a lack of training data. These architectures
efficiently identify differences in similar signals, and sig-
nificantly reduce the amount of input data required to
train a model. Siamese neural networks are used in per-
sonal identification tasks based on biomedical signals,
such as ECG [13].

The study proposes a complex method for automated
classification of ECG signals based on Siamese neural net-
works, which allows to effectively detect cardiovascular
pathologies, in particular arrhythmias, with a limited

amount of training data. The main peculiarity of the com-
plex method is a combination of high-resolution electro-
cardiography and vector cardiography methods for pre-
processing ECG signals, as well as application Siamese
neural network architectures of cardiac arrhythmia clas-
sification by detecting and analysing structural differ-
ences between the signal under study and the reference
feature vector of signals with pathology. In the study,
the input data dimensionality was reduced by transform-
ing from the 12-lead system to the orthogonal Frank sys-
tem of ECG, which allowed to get more compact but in-
formative signal representations. In addition, a special
format of input data was used, which is presented in
the form of averaged cardiac cycles and generalised fea-
ture vectors extracted by PCA, which ensures efficient
detection of key features of ECG signals while keeping
the low dimensionality of the input data. In the Siamese
neural network architectures of the proposed method,
two-layer Convolutional subnets are used to facilitate
a more accurate comparison of signals by analysing
the cardiac cycle shape and ECG signal structure simulta-
neously.

1. MATERIALS AND METHODS

A. Classical Siamese neural network
construction basics

The Siamese neural network of the classical architec-
ture (Fig. 1) consists of two identical subnetworks with
the same weights that are updated synchronously during
training. This feature requires the same dimensionality of
the data that are received at the input of each subnet-
work. The main function of the hidden layers of this net-
work is to transform the input information that similar
input data is transformed into similar output vectors, and
dissimilar data is transformed into output vectors that
are significantly different.

The layers of the Siamese neural network act as
a transformation function that focuses on the key fea-
tures that determine the differences between the input
data. This makes it possible to create distinctive output
vectors even for input data with a high degree of similar-
ity, such as ECG signals.
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After processing the data by layers of the Siamese
network, the resulting vectors are estimated using a sim-
ilarity metric (delta function) [14]. In most cases, simple
delta functions are used, such as Euclidean distance or
cosine similarity, which provide a scalar output. How-
ever, sometimes the delta function can be expressed by
combinations of several metrics. In this case, an addi-
tional layer can be used to assess the degree of differ-
ence, which decides on the similarity of the output vec-
tors.

The hidden layers of a Siamese neural network can
have different architectures depending on the task. For
example, Convolutional layers are used to process two-
dimensional data, and recurrent layers are used to ana-
lyse time sequences.

Convolutional layers of neural networks use special-
ised filters (Convolutional kernels) to extract morpholog-
ical features from the signal, which allow analysing the
signal at different levels of detalisation [15]. Convolu-
tional have the following parameters: 1) The Convolution
kernel is a small matrix that moves over the input signal,
calculating the scalar product between the kernel nodes
and the corresponding parts of the signal. 2) Stride is
the parameter that determines the number of positions
of the Convolution kernel shift during each movement
along the input signal. 3) Padding is parameter that
determines the addition of a frame of zeros or other
values around the boundaries of the input signal to pre-
serve the dimensionality of the output signal or to
ensure that the kernel correctly covers the entire input
space. The correct choice of these parameters deter-
mines how detailed the features will be extracted from
the input data. The choice of kernel size affects the ability
of the model to detect features at different scales.
Increasing the stride can lead to information loss, but at
the same time, it reduces the computational complexity
and dimensionality of the data.

B. Overview of the data for training and
testing the neural network

To test the developed model, the database "PTB-XL,
a large publicly available electrocardiography dataset"
was chosen as the training data, which contains about
twenty-two thousand clinically recorded ECGs in 12-lead
from 18869 patients [16]. Each record is approximately
10 seconds long. Although the database includes about
70 different pathological conditions of the cardiovascular
system, only 20 of them contain a sufficient number of
records to train neural networks. The following classes
contain the largest number of records: Normal ECG,
myocardial infarction, atrial fibrillation, left ventricular
hypertrophy, left and right bundle branch block, atrial
and ventricular extrasystoles. The ECG signals of this
database are presented with 16-bit ADC resolution and
500 Hz sampling frequency, which makes it possible to
use HR ECG methods to detect VLP and ALP.
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For the study, the signals containing 18 types of car-
diac arrhythmias were selected. In addition, the training
dataset includes signals with 19 types of cardiac condi-
tions that can cause or be accompanied by different
types of arrhythmias. Such pathologies include various
forms of myocardial hypertrophy, coronary heart
disease, and heart attack [17]. The signals with existing
VLPs and ALPs were also used for testing. Signals
with VLP and ALP were obtained by superimposing arti-
ficially generated late action potentials on a normal ECG.
The process of action potential propagation was mod-
elled on the basis of the parallel conduction model [18].
In addition, normal ECG signals that did not contain any
pathology were selected for the study. The example of
a cardiac cycle with the existing VLP and ALP is shown in
Fig. 2.

Due to the large number of selected subclasses,
the amount of training data for each class varied greatly.
For many diseases, the number of observations did not
exceed 200. At the same time, classes with 2000 obser-
vations were also involved in the training process, includ-
ing ECG signals corresponding to the normal state.
To solve this problem, the input data were additionally
balanced.

Firstly, to increase the number of observations in
the samples with less than 500 records, data augmenta-
tion methods were applied [19], such as:

e Adding fragments of harmonic noise to the signal
with a signal-to-noise ratio of 18-40 dB;

e Adding drift of isolines of different shapes;

e Adding physiological noise (breathing and mus-
cle activity artefacts).

The parameters of harmonic noise, isoline drift, and
physiological artefacts were adjusted to ensure that each
altered ECG signal after augmentation was unique. This
allowed to avoid repetition of the same modifications
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within the same disease class and to preserve the diver-
sity of the data for further analysis. For classes with less
than 150 observations, duplicate augmentation methods
were used to double the sample size. For classes with 71
to 150 observations, the sample size was increased
threefold, and for classes with 31 to 70 observations,
the sample size was increased fourfold. This approach
ensured proportional sample expansion depending on
the initial size of the class data.

Secondly, for signals with pathologies that contained
more than 1500 observations, neural network filtering
was applied to remove records with a high level of noise
or with the absence of a useful signal [20].

Therefore, classes with insufficient number of data
were supplemented using augmentation methods.
The classes with a large amount of data were reduced by
removing noise signals, improving the overall quality of
the training set.

C. Preparation and pre-processing of data
for NN training

In accordance with the proposed complex method,
twelve-channel signals of electrocardiography (ECG) are
initially preprocessed. It is a necessary condition for
improving the efficiency of model training. This stage
reduces the dimensionality of the input data space,
improves the structure of the input data, and improves
their informativity, which leads to better signal pro-
cessing by the neural network. Fig. 3 shows the main
stages of signal pre-processing required for their input to
the developed neural networks.

The first stage (Fig. 3) of signal pre-processing of
the proposed complex method is noise removal. Accord-
ing to this stage, the first step of processing is input data
filtering.

The signals from the twelve-channel ECG were pro-
cessed using a fifth-order low-pass Butterworth filter
with a cutoff frequency of 150 Hz to remove high-fre-
quency noise. In turn, a third-order high-pass Butter-
worth filter with a cutoff frequency of 0.5 Hz was used
to eliminate low-frequency noise [21]. In addition,
the interference of the power grid in the ECG signals was
also effectively removed using second-order digital notch
filters configured for cutoff frequencies of 50 and 60 Hz
with a quality factor of Q = 50 [21]. All signals were sub-
jected to phase-neutral filtering, which ensured
the preservation of the phase structure of the signal
without distortion. [22].

At the second stage, to reduce the dimensionality
of the input features, the twelve-channel ECG was trans-
formed into the three-dimensional XYZ space using vec-
torcardiography methods [23].

Vectorcardiography is used to diagnose rhythm dis-
turbances, myocardial damage and hypertrophy. To build
a three-dimensional trajectory of the electrical axis of

the heart, a Frank lead system is used, which provides
accurate registration of signals in the frontal (X), sagittal
(Y), and horizontal (Z) planes [24]. The standard twelve-
lead system records the electrical activity of the heart in
the frontal and horizontal planes, while the Frank system
provides a more accurate analysis in the sagittal plane
[25]. To obtain three-dimensional information, transfor-
mation methods are being developed to convert signals
from the standard ECG lead system to the Frank lead sys-
tem using linear transformation matrices [26]. This
makes it possible to build three-dimensional models of
cardiac electrical activity without using specialised
equipment.

For a standard twelve-lead ECG, if one time sample of
the signal is a vector with dimension of [12x1], then
the three-dimensional representation of this sample in
the Frank's lead system could be computed as a matrix
product:

XYZ[3,01 = R3x2) ECGlioy »
where P is the linear transformation matrix.

The linear transformation matrix used to convert ECG
signals from the standard lead system to the Frank's or-
thogonal lead system is shown below (Table 1).
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TABLE 1 MATRIX OF LINEAR TRANSFORMATIONS FROM STANDARD
TO FRANK'S LEAD SYSTEM [26]

Lead | 1l 111 aVR aVvL aVF
X 0.63 0.24 -0.40 -0.43 0.52 -0.08
Y -0.24 1.07 1.30 -0.42 -0.77 1.18
Y4 0.06 -0.13 -0.19 0.04 0.13 -0.16

V1 V2 V3 V4 V5 Vé

X -0.52 0.04 0.88 1.21 2.13 0.83

Y 0.16 0.16 0.10 0.13 0.13 0.08
VA -0.92 -1.39 -1.28 -0.60 -0.09 0.23
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At the third stage, having a three-dimensional repre-
sentation of the ECG signal, the resulting vector R(t) can
be obtained:

RO =X +Y (0 + Z(1)?

where X(t), Y(t), Z(t) are projection of a three-dimen-
sional ECG on the X, Y, Z axis.

The use of this approach in the developed method
makes it possible to convert a multidimensional, multi-
channel ECG signal into a three-dimensional representa-
tion or a one-dimensional resultant vector. This signifi-
cantly reduces the dimensionality of the training data
without significant loss of diagnostic information. Alt-
hough such a representation may be difficult for doctors
to understand, it may be quite sufficient for a neural net-
work, since the resulting three-dimensional representa-
tion or resulting vector R(t) compactly reflects the com-
ponents of the multichannel ECG.

The next stage of signal preprocessing for the pro-
posed complex method was the normalisation of
the resulting feature vectors obtained for each observa-
tion [27]. This procedure was carried out to ensure scale
consistency of the data, increase the model's resistance
to variability of input parameters, and improve the con-
vergence of the neural network training process.

The resulting vectors were normalised by scaling the sig-
nals relative to R-peaks. In this case, the amplitude of
the R-peak of the signal was adjusted to 1 mV.

At the final stage of signal processing, an averaged
cardiac cycle was constructed. The averaged cardiac
cycle is one of the tools of the ECG HR, which allows to
obtain a QRS complex with a significantly lower noise
level [28]. The use of the averaged cardiac cycle allows
for a more detailed analysis of low-amplitude signal com-
ponents, such as VLP, ALP, which can be useful for detect-
ing life-threatening arrhythmias at early stages. To con-
struct an averaged cardiac cycle, the ECG signal was seg-
mented into one-second fragments with R-peak synchro-
nisation. At the next step, the obtained fragments were
superimposed on each other and averaged. Thus, for
each resulting ECG signal vector of 5000 samples, an
averaged cardiac cycle of 500 samples and one second
duration was constructed.

Thus, the normalised resultant vector and the gener-
ated averaged cardiac cycle were used as input data of
the neural network. This approach made it possible to
preserve the information in the time domain obtained
from a long-term ECG signal, while also providing a more
accurate analysis of the cardiac cycle morphology due to
the shorter but more detailed representation of the sig-
nal in the form of an averaged cardiac cycle.

D. Construction a feature vector of signals
with pathologies for Siamese neural net-
work

For training, the Siamese neural network requires
the availability of reference signal samples for each
pathology. Building such samples is also one of the key
stages of the developed method.

Since the morphological features of ECG pathologies
can differ between patients, so it is very difficult to
extract a reference representation for training a Siamese
neural network. To identify the main pathological fea-
tures, it is necessary to use a sample of ECG signals, but
the peculiarity of the architecture of Siamese neural net-
works requires the presence of identical input vectors for
comparison. Therefore, principal component analysis
(PCA) was applied to solve this problem. This statistical
method is aimed at extracting the vectors that explain
the largest part of the variation in the input data (princi-
pal components). The application of the PCA method
makes it possible to obtain a feature vector containing
information that reflects the common characteristics of
ECG signals from patients with pathology [29].

The sum of the first five PCA decomposition compo-
nents was used to form the feature vector (Fig. 5). Each
principal component is dimensioned in millivolts
because it is a weighted linear combination of the origi-
nal ECG signals which are also expressed in the same
units. This decomposition was performed separately to
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the resulting ECG vector and the constructed averaged
cardiac cycles. As a result, a feature vector of signals with
pathology was obtained for training (Fig. 6 c, d). Since
the Siamese neural network is not aimed at memorising
disease features like classical neural networks, but
focuses on assessing the similarity between the signal
under study and the reference feature vector, such vec-
tors can be generated based on only 100 ECG records
with pathology. Using PCA to build a feature vector
allows to obtain a vector that is visually similar to the ECG
signal.

This allows to analyse the impact of key signal peculi-
arities on the classification results of a neural network.
However, the use of the principal component analysis
(PCA) method to generate a feature vector has limita-
tions, as the first five principal components may not con-
tain enough information to correctly identify signal
changes with the existing pathology. Therefore,
the choice of a construction method for pathological fea-
ture vector should take into account specific diagnostic
characteristics of different leads.

Fig. 6 shows an example of the signals fed to
the inputs of a Siamese neural network. Each input signal
consists of two components: an averaged cardiac cycle
(Fig. 6 a, c), which contains detailed information about
the morphology of the cardiac cycle, and a fragment of
the ECG signal (Fig. 6 b, d), which contains characteristics
of the heart's electrical activity over a longer time inter-
val which is important for detecting rhythm disturb-
ances. The amplitude scale in the lower plot (c-d) differs
from the upper (a-b) because it represents the signal

reconstructed from the first five principal components
after PCA. Despite the transformation, the resulting sig-
nal also remains millivolt unit, because PCA is a linear
transformation applied to the original ECG signals. How-
ever, due to the concentration of variance in the first
components, their summation may lead to amplitude
amplification in the reconstruction compared to the orig-
inal input signal shown in (a-b).

Such representation allows the neural network to
combine an accurate analysis of the shape of individual
cardiac cycles with the features of a long-term ECG sig-
nal, which helps to improve the accuracy of cardiovascu-
lar disease diagnosis, in particular, the identification of
arrhythmias and other pathological conditions at early
stages.

Although PCA effectively reduces the dimensionality
and allows to build aggregated representations from
a small number of pathological ECG signals, it has a num-
ber of limitations. PCA captures global variance, which
does not always reflect diagnostically significant fea-
tures, such as artefacts or high amplitude signal compo-
nents can produce high variance and predominate in PCA
decomposition, at the same time, weakly expressed
pathological features such as late potentials can have low
variance and therefore may be missed in the low number
of components. Since PCA operates with linear combina-
tions of data, components with nonlinear patterns
between ECG elements may be lost or poorly taken into
account, especially when a limited number of principal
components are used to form the representation (as in
our case).

Signals received at the inputs of the neural network
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One possible way to improve the feature vector
extraction quality is combining PCA with nonlinear
dimensionality reduction methods or use neural net-
work-based features vectors extraction, for example,
using autoencoder.

E. Evaluation of neural network training
quality

The following measures were used to assess the qual-
ity of neural network training: sensitivity, specificity, and
overall classification accuracy. They provide a formalised
characterisation of the ability of the NN model for cor-
rect recognition of disease classes, which is a key aspect
of analysing its generalisation ability.

True Positive Rate (TPR) is the measure that reflects
the proportion of correctly identified positive cases
among all real positive instances, is calculated as:

R TP
TP+ FN
where TP (True Positives) is the number of correctly clas-
sified positive observations; FN (False Negatives) is
the number of positive observations that were mistak-
enly classified as negative.

The true negative rate (TNR) is a measure that reflects
the ability of a classifier to correctly identify negative
instances among all objects belonging to a negative class.
It is calculated by the formula:

T
RV
TN + FP
where TN (True Negatives) is the number of correctly
classified negative observations, FP (False Positives) is

the number of negative observations that were mistak-
enly assigned to the positive class.

Overall Accuracy (ACC) is an integral measure of clas-
sification quality that determines the proportion of cor-
rectly classified instances among all available objects. It
is calculated by the formula:

_ TP+IN
TP+TN + FP+FN

1. DEVELOPMENT OF SIAMESE NEURAL NETWORKS
MODELS FOR CLASSIFICATION OF ECG SIGNALS
WITH SIGNS OF ARRHYTHMIAS USING A LIMITED
AMOUNT OF TRAINING DATA.

A. Development of a Siamese neural
network model for VLP and
ALP classification
At the initial stage of the study, the ability of the Sia-
mese neural network to recognise a limited number of

signals with the same type of pathology was assessed.
This approach made it possible to preliminarily deter-

mine the effectiveness of the developed method for clas-
sifying ECG signals with cardiovascular pathologies. For
testing, ECG signals with available late ventricular and
atrial potentials were selected. Thus, the Siamese neural
network was used to recognise normal ECGs, ECGs with
VLPs, ECGs with ALPs, and ECG signals with VLPs and ALPs
simultaneously.

In order to detect late ventricular and atrial poten-
tials, the first Siamese neural network model was devel-
oped (Fig. 7). To train the neural network to recognise
VLPs and ALPs, only the first 500 samples of the input
signal, corresponding to the averaged cardiac cycle of
the resulting ECG vector, were used.

For Siamese NN training, the backpropagation algo-
rithm was applied, which adjusts the network's weights
based on gradient descent. Adam (Adaptive Moment
Estimation) was selected as the optimizer, combining
the advantages of Adagrad and RMSprop methods.
Adam adaptively adjusts the learning rate for each
parameter by utilizing the first moment (the estimate of
the mean gradient) and the second moment (the esti-
mate of the mean squared gradient). This approach
ensures stable weight updates even in complex nonlinear
spaces. The main advantages of this optimizer are rapid
convergence, efficient handling of noisy gradients, and
the capability to avoid local minima, which contributes to
the generalization ability of the model.

To train the NN, 3200 ECG records were selected, 800
for each of the four diagnostic classes. Reference feature
vectors of signals with pathologies were generated for
comparison from 100 randomly selected ECG signals
with VLP and ALP. The training results of the first Siamese
neural network model were compared with the training
results of the specialised ECGnet architecture, which was
trained on the same training data set. For each neural
network, the batch size was chosen in the amount of 100
records, and training was performed for 100 epochs.
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B. Siamese neural network training results
for VLP and ALP classification

The results of training a Siamese neural network to
detect ECG signals with pathological low-amplitude com-
ponents, namely VLP and ALP, are shown in the Table 2.

From the analysis of Table 2, it can be concluded that
the first Siamese NN model classification accuracy for
the classes of normal, VLP, ALP, and VLP+ALP is higher
than the accuracy achieved after training by the special-
ised ECGnet NN. The evaluation of the sensitivity and
specificity measures showed that for the disease classes,
the specificity significantly exceeds the sensitivity. This
indicates the difficulty of recognising low-amplitude sig-
nal components, namely VLP and ALP, by neural net-
works. To eliminate this problem, it is necessary to apply
additional methods of data pre-processing. At the same
time, the use of the developed Siamese architecture
leads to an increase in sensitivity, which confirms its
effectiveness for the diagnosis of cardiovascular pathol-
ogies, in particular those characterised by low-amplitude
features. Thus, the proposed Siamese architecture has
the potential for application, especially in cases of diag-
nosis when comparing weakly expressed pathological
signals changes.

C. Development of a Siamese neural
network models for arrhythmia
classification

For the multi-class classification task, in case of a lack
of training data, a second Siamese neural network with
a larger number of layers was developed.

Subnet 1
ConviD ConviD
o1 0 in: 1 Chs. in: 10 Chs.
. out: 10 Chs. out: 20 Chs.
e kernel: 3 kernel: 10
stride: 1 stride: 5
&1 padding: 0 padding: 0

The transformed ECG signal received from the patient
was fed to one input of NN, and the feature vector of sig-
nals with the pathology under study was formed to
the other input. The model was trained using different
feature vectors for the same pathology. In the neural net-
work under consideration, different parts of the input
vector are analysed by two sequences of layers. The first
sequence is aimed at extracting features from the aver-
aged cardiac cycle. The second sequence extracts fea-
tures from an ECG vector of ten seconds duration. In each
sequence, the first Convolutional layers process the input
signal, extracting features at different levels of detalisa-
tion, which allows for more efficient analysis of its struc-
ture and dynamic characteristics. In the subnetwork that
processes the ECG vector, the first layer is the Pulling
layer, which reduces the dimensionality of the input data
from 5000 samples to 1000. This layer works as
a resampling unit with the selection of the maximum
coefficients of the Convolutional layer of the NN. After
the Convolutional layers, both subnetworks have a Flat-
ten layer that converts the multi-channel Convolutional
result into a single-channel sequence for feeding to
the fully connected neuronal layer.

TABLE 2 COMPARISON OF THE CLASSIFICATION QUALITY MEASURES OF THE SIAMESE
NEURAL NETWORK AND THE ECGNET NETWORK IN THE VLP AND ALP RECOGNI-
TION TASK

Norm VLP ALP VLP + ALP

Siamse net TPR 98% 63% 52% 42%
TNR 99% 90% 87% 100%
ACC | 98% 83% 78% 95%
ECG net TPR 84% 32% 24% 34%
TNR 87% 85% 87% 91%
ACC | 86% 71% 68% 86%
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Also, the subnetwork that processes the averaged
cardiac cycle has a batch normalisation layer to increase
the stability of the coefficients after the data has passed
through many Convolution layers. Both subnetworks use
a Dropout layer that disables 10% to 20% of random neu-
rons during training. These layers are used to increase
the generalisation power of the model and reduce possi-
ble overfitting. Each subnetwork is ended by several fully
connected layers that sequentially reduce the number of
output features. After passing through both subnet-
works, the resultant vectors of 500 samples are gener-
ated and compared using a delta function that estimates
the distance between them. The last fully connected
layer used after the delta function determines the dis-
tance between analysed ECG vector and the feature vec-
tor of signals with pathology. The output of the last layer
is 1 if the distance is small (pathology is detected) and 0
if the distance is large (the desired pathology is not
detected).

D. The Siamese neural network training
results for arrhythmia classification

Table 3 shows the results of classifying ECG signals
with pathologies using the developed second Siamese
neural network model. The table shows that the size of
the data in each class does not exceed 2000, and
the sample size for some pathologies is less than 200. To
compare the classification results, the architecture of
the specialised deep neural network ECGnet for ECG sig-
nal classification was chosen [12]. The ECGnet network
was trained on the same training data as the developed
Siamese NN. The difference was only in the output data
format. The ECGnet neural network returned the result
in the form of a vector of 37 elements in the one-hot
encoding format. In turn, the developed neural network
was trained to detect the similarity of the ECG signal
under study and the feature vector of signals with
pathology, which was built on the basis of 100 patholog-
ical ECG records. Each network was trained for 100
epochs, with a batch size of 200. The learning rate was
set to n = 0.001. Both neural networks were tested on
identical test data.

The analysis of Table 3 shows that for almost every
pathology, the developed NN is more accurate than
the ECGnet network. The average classification accuracy
of ECG signals with pathologies was 64% for the ECGnet
network and 74% for the developed Siamese neural net-
work. The proposed Siamese architecture significantly
improves the quality of pathology classification based on
ECG signals. For samples with more than 1000 records,
an improvement of 19% is observed for "Left anterior
branch block". For samples with less than 1000 records,
was obtained the improvement of 28% for "Ischemia in
the anterolateral leads". For a training set of less than
200 records, an improvement of 19% was observed for

"Lateral Myocardial Infarction". The overall average
improvement in the accuracy of detecting VLP and ALP
was 9%. Thus, the developed NN architecture also shows
better results for detecting ECG signals with pathological
low-amplitude components. It is relevant to note that
the classification accuracy of VLP and ALP is about 60 %.
This accuracy can be explained by the fact that other
pathologies in the dataset have more expressive fea-
tures, which in turn have a greater impact on
the weighting coefficients of the neural network.

To solve this problem, it is necessary to additionally
use methods for extracting low-amplitude ECG compo-
nents. In addition, among the obtained results, there
were classes of diseases whose classification accuracy
was low, both using the developed neural network and
ECGnet. Low classification accuracy is observed mainly in
the detection of myocardial infarction and coronary
heart disease. To detect these cardiac conditions, it is
necessary to analyse the amplitudes of QRS complex
peaks in different leads. The calculation of the resulting
ECG vector based on the three-dimensional XYZ repre-
sentation smoothes out amplitude differences in peaks,
which makes it difficult to detect cardiomyopathies and
ischemic disorders. To improve the accuracy of ECG sig-
nal classification for this type of pathology, it is better to
use the XYZ representation of the ECG rather than
the resultant vector.

It should be noted that Table 3 presents ECG signals
with pathologies for which high classification accuracy is
observed even with a limited sample size. These are
mainly classes of pathologies characterised by severe
rhythm disturbances, in particular, "Supraventricular
tachycardia". The presence of clearly defined electrocar-
diographic signs makes such pathologies easier to iden-
tify by the neural network, which improves the accuracy
of their diagnosis.

Compared to traditional classification approaches
that directly compare the input ECG signals with diagnos-
tic labels, the proposed method based on comparing
the signal with the reference feature vector is less de-
pendent from balanced data sets or high amount of
training data. However, its accuracy may be lower in
cases where pathologies have common or low-amplitude
features. The comparative results between the classical
approach based on ECGnet and the proposed Siamese
neural network method on the mixed PTB-XL dataset are
presented in Table 3. As shown in Table 3, the model per-
forms well for pathologies with clear patterns (for exam-
ple, 96% accuracy for supraventricular tachycardia), but
provides limited improvement for complex diagnoses,
such as ischemia in inferolateral leads or myocardial
infarction, where the patterns are less clear. These limi-
tations may be the subject of further research.
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TABLE 3 COMPARISON OF THE ECG CLASSIFICATION ACCURACY FOR SIGNALS WITH PATHOLOGIES USING THE DEVELOPED SIAMESE NEURAL NETWORK AND ECGNET
ECG Signals with Number of ECGnet Developed ECG Signals with Pathol- Number of ECGnet Developed
Pathology Observations Accuracy Network ogy Observa- Accuracy Network
Accuracy tions Accuracy
Atrial extrasystole | 383 52% 68% Right ventricular hypertro- | 141 65% 83%
phy
Atrial fibrillation 1197 73% 80% Voltage electrocardio- 655 52% 62%
graphic criteria for left ven-
tricular hypertrophy
Sinus arrhythmia | 686 50% 60% Left atrial overload/en- 390 51% 64%
largement
Sinus tachycardia | 888 72% 87% Right atrial overload/en- 281 79% 86%
largement
Sinus bradycardia | 517 64% 78% Non-specific ischemia 918 59% 74%
Supraventricular 409 62% 77% Ischemia in anterolateral 607 50% 78%
arrhythmia leads
Supraventricular 149 99% 96% Ischemia in inferior leads 204 51% 58%
tachycardia
Paroxysmal supra- | 160 99% 96% Ischemia in inferolateral 190 53% 56%
ventricular tachy- leads
cardia
Bigeminy of un- 167 91% 82% Ischemia in anteroseptal 160 51% 71%
known origin leads
Ventricular extra- | 920 72% 78% Inferior myocardial infarc- | 1532 51% 63%
systole tion
First-degree AV 710 51% 66% Anteroseptal myocardial in- | 1242 56% 71%
block farction
Complete right 462 64% 87% Anterior myocardial infarc- | 336 51% 59%
bundle branch tion
block
Complete left bun- | 559 94% 88% Anterolateral myocardial 211 54% 68%
dle branch block infarction
Incomplete right 757 53% 67% Inferolateral myocardial in- | 403 50% 59%
bundle branch farction
block
Left anterior fas- 1038 53% 72% Lateral myocardial infarc- | 169 50% 69%
cicular block tion
Left posterior fas- | 192 60% 72% Prolonged QT interval 348 68% 87%
cicular block
Wolff-Parkinson- | 239 90% 94% ST-T changes associated 142 86% 87%
White syndrome with ventricular aneurysm
Prolonged PR in- | 281 51% 57% Late atrial potentials 800 50% 58%
terval
Left ventricular 1431 56% 69% Late ventricular potentials | 800 50% 60%
hypertrophy
Right ventricular 141 65% 83% Average model accuracy 68% 72%
hypertrophy
CONCLUSION vectors of signals with pathologies using only 100 obser-

In this study, an approach is proposed to solving
the problem of classifying ECG signals with cardiovascu-
lar pathologies using Siamese neural networks under
conditions of limited amount of training data.

A complex method has been developed that com-
bines high-resolution electrocardiography and vector
cardiography methods, as well as Siamese neural net-
works, which makes it possible to improve the accuracy
of cardiac arrhythmias classification. A peculiarity of
Siamese NNs is the ability to compare the input ECG sig-
nal vectors and the generated feature vector of signals
with pathology, which allows to effectively identify their
differences, even with a limited amount of training data.
To construct the reference vectors the transformation
from the 12-lead system to the orthogonal Frank system,
as well as the construction of the averaged cardiac cycle
and the principal component analysis (PCA) method was
used. This approach made it possible to create feature

vations.

In this study, two models of Siamese neural networks
for the analysis of ECG signals were developed. First
model is focused on the detection of low-amplitude
pathological features, such as VLP and ALP. The second
model is designed for multi-class classification of 18
types of arrhythmias and 19 associated pathologies,
including coronary heart disease, hypertrophy, and myo-
cardial infarction.

The results of the study demonstrated that the pro-
posed Siamese NN has higher accuracy compared to
the specialised ECGnet network. In the task of VLP and
ALP detection, the first NN model exceeded the accuracy
of the classic approach by 10%, while reducing the num-
ber of false-negative predictions. The second NN model,
designed for multi-class signal classification, improved
the classification accuracy by 10% on average, and for in-
dividual classes, such as ischemic changes in the anterol-
ateral leads, the maximum improvement was 28%.
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The obtained results confirm the promising applica-
tion of Siamese neural networks in the tasks of auto-
mated diagnosis of cardiovascular diseases, especially
under conditions of insufficient amount of balanced
training data. Further improvement of the method is
possible by using additional transformations of input fea-
tures to save more information about weakly expressed

pathological changes in ECG signals, as well as by apply-
ing additional methods to intensify low-amplitude signal
components. The developed complex method has
the potential for implementation in modern automated
cardiac diagnostic systems, particularly for detecting
arrhythmias and other disturbances in the heart's elec-
trical activity that are characterized by weak manifesta-

tions in ECG.
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[,A€E MOXK/IUBICTb NiABULLMTU TOUHICTb KnacudiKauii cepuesBux aputmiii. OcobamBicTb 3anponoHOBAHOro MeToga, AKa 6asyeTbca
Ha 3aaTHOCTi ciamcbknx HM Ao nopiBHAHHA, NonArae y BUABAEHHI Ta aHanisi BigmiHHocTel mixk EKI curHanom, wo gocnigiky-
€TbcA, Ta cpOPMOBaHUM €TaJIOHHMM BEKTOPOM O3HaK CUTHaniB 3 NaTONOri€El, WO A03BONAE e(PEKTUBHO iAeHTUPiIKYBATU 3MiHM
CUrHaniB HaBiTb ANA TUX 3aXBOPIOBAHb, AKi 06MeXKeHO-NpeacTaB/eHi B HaBYanbHOMY Habopi gaHux. Kpim Toro, ana nigsu-
WweHHA ePpeKTUBHOCTI HaBYaHHA 6yB po3pobneHuii metos popmMyBaHHA €TaIOHHOTO BXiAHOrO BEKTOPA O3HAK 3aXBOPIOBAHHS,
AKUA BUKOPUCTOBYETLCA CIAaMCbKOIO HEMPOHHOIO MepexKelo ANA MOPIBHAHHA. 3aCTOCYBAaHHA MeTOAY FO/I0OBHUX KOMMOHEHT
(PCA) po3Bonusio BUAINUTK KNtouoBi 03Haku 3i 100 EKM-curHanis i3 natonoriamu, Lo cCNp1Ano CTBOPEHHIO €TaJIOHHOTO BEKTOpa
03HaK i3 MiHiManbHOIO KiNbKiCTIO TPeHyBabHUX 3pa3kKiB. [l0AaTKOBO A8 KOXKHOro BXigHoro EKlM-curHany Ta eTanoHHOro Bek-
TOpa po3paxoByBaBCA ycepeaHEeHU KapAiouuMKa, Wwo cnpuano igeHtudikauii HusbkoamnaityaHux komnoHeHTiB EKI Ta 0co6-
nusocteit QRS KomnaeKcy. nA peanisauii po3po6aeHOro KOMNIEKCHOro MeToay BUKopuUcToByBanaca 6a3a PTB-XL, wo mictutb
12-kaHanbHi EKT-3anucu, knacudikosaHi 3a 70 Kateropiamm 3axsoproBaHb. [/19 3MeHLIEHHA BNAUBY AUcbanaHcy AaHUX 3aCTo-
COBaHO METOAM ayrMeHTaLii, a TaKOX MeToAM nonepeaHboi 06p0o6KM LWAAXOM BUAANEHHA 3allyMIEHMX CUrHanis Ta BUGipkose
CKOPOYEHHA HaaMipHO NpeAcTaBAeHUX KnaciB. B pamkax gocniakeHHA po3pobieHo ABi moaeni CiaMCbKMX HEMPOHHUX MepeX.
MNepwa moaenb opieHTOBaHa Ha BUABJIEHHA HU3bKOAMMAITYAHUX naTtonoriyHux KomnoHeHT EKI curHanis, 3oKpema nisHix
noTeHuianiB nepegcepab Ta WAYHOUKIB. [lpyra mogenb, npusHayeHa gna kKnacudikauii 18 Tunis aputmiii i 19 cynytHix natono-
riii, TaKuX AK ilemiyHa xsopoba cepus, rineptpodin Ta iHpapKT miokapaa. EpeKkTUBHICTb 3anponoHoBaHux mogeneit HM 6yna
OUjiHEeHa WAAXOM NopiBHAHHA 3 mepeKeto «ECGnet» y 3agaui po3ni3HaBaHHA Ni3HiX NoTeHLUianiB nepeacepab i WAYHOUKIB.
Meplwa mogenb nepeBuwMna TouHicTb «ECGnet» y cepeaHbomy Ha 10% Ta 3meHLWMUAQ MMOBIPHICTb XMGHOHEraTUBHUX NPOTHO-
3iB. [lpyra mogenb HM ana 6aratoknacoBoi Knacudikauii, sKka oxonatoBana 37 AiarHOCTUMHUX KAACiB 3 PigKICHUMM 3aXBOpIO-
BaHHAMM, WO MalOTb MeHLue, Hix 200 cnocTepekeHb, NepeBuULLMA cepeaHio ToUHicTb «ECGnet» Ha 10%, pocAratoum mMmakcu-
ManbHOro npupocty B 28%. OTpuMaHi pe3ynbTaT A03BONAIOTb OKPEC/IUTU NOAAbLUI WAAXU BAOCKOHANIEHHA KOMIMJIEKCHOTO
meToay. 30Kpema, niaBULLEeHHA TOYHOCTI Knacudikauii EKI curHanis 3 natonorismm moxamBe WASXOM BUKOPUCTAHHA A0A[aT-
KOBMX NepeTBOPEHb BXiHUX O3HaK Ta METOAIB NiACUNEHHA HU3bKOAMNNITYAHUX KOMMNOHEHT CUrHany.

Kntouoei cnoea — enekmpokapdiozpadpis; ciamcoKi HelipoHHi Mmepei; ni3Hi nomeHyianu wayHoYKie; ni3Hi nomeHyianu
nepedcepdb; cepyeea apummis; eekmopkapodiozpaia; cuHaynapHuli po3Knad.
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