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Abstract—The article is focused on the development of Siamese neural network models for ECG signals classification 
that reflect cardiovascular pathologies, including arrhythmias, in the context of a limited amount of training data.  
The problem of a shortage of training data in machine learning for diagnosing heart disease is associated with a wide variety 
of pathological states and insufficient information for certain classes in open medical databases. The study aims to develop 
a complex method based on the combination of high-resolution electrocardiography and vectorcardiography with Siamese 
neural network architectures and training methods, which makes it possible to improve the accuracy of cardiac arrhythmias 
classification. The peculiarity of the proposed method, which is based on the ability of Siamese NNs to compare, is to detect 
and analyse the differences between the ECG signal under study and the generated reference feature vector of signals with 
pathology, which allows to effectively identify signal changes even for those diseases that are limitedly represented in  
the training dataset. In addition, to improve the efficiency of training, a method for generating a reference feature vector for 
pathological signals was developed. This vector is used by the Siamese neural network for comparison. The application of 
the principal component analysis (PCA) method allowed to extract key features from 100 ECG signals with pathologies, 
which contributed to the creation of a reference feature vector with a minimum number of training samples. Additionally, 
for each input ECG signal and reference feature vector, an average cardiac cycle was calculated, which helped to identify 
low-amplitude ECG components and features of the QRS complex. To implement the developed complex method, the PTB-
XL database was used, which contains 12-channel ECG records classified into 70 disease categories. To reduce the impact 
of data imbalance, augmentation methods, as well as preprocessing methods were used to remove noisy signals and selec-
tively reduce overrepresented classes. Two models of Siamese neural networks (NN) were developed as part of the study. 
The first model is focused on detecting low-amplitude pathological components of ECG signals, in particular, late atrial and 
ventricular potentials. The second model is designed to classify 18 types of arrhythmias and 19 associated pathologies, such 
as coronary heart disease, hypertrophy, and myocardial infarction. The effectiveness of the proposed NN specialised ECGnet 
network models was evaluated by comparing them with the specialised ECGnet network in the task of recognising late atrial 
and ventricular potentials. The first model exceeded the accuracy of ECGnet by an average of 10% and reduced the proba-
bility of false negative predictions. The second NN model for multi-class classification, which covered 37 diagnostic classes 
with rare diseases with less than 200 observations, exceeded the average accuracy of ECGnet by 10%, reaching a maximum 
increase of 28%. The obtained results allow to outline further ways to improve the complex method. In particular, improving 
the accuracy of ECG signal classification with pathologies is possible by using additional transformations of input features 
and methods of amplifying low-amplitude signal components. 

Keywords — electrocardiography; Siamese neural networks; late ventricular potentials; late atrial potentials; cardiac  
arrhythmia; vector cardiography; singular value decomposition. 

 

I. INTRODUCTION 
Nowadays, various types of neural networks (NN) are 

actively used in automated diagnostic systems [1]. Usu-
ally, automated systems can make decisions and perform 
diagnostics using much less input data than is necessary 
for a doctor. This aspect of neural networks exists  
because of their high ability to identify hidden features 
and patterns, but it can cause false results due to overfit-
ting [2]. To avoid such cases, it is necessary to use  
datasets with a large number of observations that could 

fully describe the variance of real diagnostic cases. Con-
sequently, such systems are most often trained to detect 
common subgroups of diseases, for example, coronary 
heart disease, arrhythmia [3]. A more specific diagnosis 
may not be accurate enough due to the growing diversity 
between groups when analysing ECGs. As a result, more 
training data needs to be used to improve accuracy. 

Analysed ECG signals may have different degrees of 
pre-processing, different sampling rates, number of 
leads, and high levels of noise. Due to the large number 
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of cardiac diseases that can be simultaneously mani-
fested in a single ECG record, the interpretation of such 
signals and diagnosis becomes complicated [4]. Unfortu-
nately, due to the large variety of cardiovascular pathol-
ogies and their combinations, it is currently difficult to 
create training samples with the required amount of 
data. To solve this problem, approaches are being devel-
oped to improve training efficiency with a limited 
amount of training data [5], [6]. 

In addition to analysis of the classical ECG signal com-
ponents with an amplitude range of 0.1 - 1 mV and fre-
quencies in the range of 0. 5 - 40 Hz, to detect life-threat-
ening tachyarrhythmias at early stages, low-amplitude 
ECG signal components can be analysed, namely, ventric-
ular late potentials (VLP) and atrial late potentials (ALP) 
with amplitudes of 1 - 40 µV and frequencies of 40 - 
250 Hz. Such components are usually detected by high-
resolution electrocardiography (HR ECG) [7].  

Another promising application of automated NN sys-
tems is digital medicine, where patients can receive basic 
diagnostics at home without wasting time in hospital 
queues and significantly reducing the healthcare cost [8]. 
The introduction of such systems would help to predict 
life-threatening conditions of the cardiovascular system 
and allow for timely medical treatment. 

To improve the quality of biomedical signal classifica-
tion, Convolutional layers are used in the architecture of 
neural networks. These layers analyse the morphological 
features of signals, which allows to analyse them at dif-
ferent levels of detalisation [9]. In addition, recurrent lay-
ers are used to analyse sequences, especially long-term 
signals. The use of these layers allows to extract time- 
dependent features from signals and, as a result, reduce 
the required amount of data for high-quality training 
[10].  

For specific diagnostics tasks, combinations of differ-
ent layers are used to create universal architectures.  
The ResNet neural network architecture is focused on 
detecting complex patterns in signals [11]. There are also 
specialised architectures for recognising certain types of 
data. The ECGNet architecture has special architectural 
solutions for detecting features in the ECG using various 
Convolutional layers and built-in attention mechanisms 
aimed at different signal components [12].  

Siamese neural network architectures perform well 
when there is a lack of training data. These architectures 
efficiently identify differences in similar signals, and sig-
nificantly reduce the amount of input data required to 
train a model. Siamese neural networks are used in per-
sonal identification tasks based on biomedical signals, 
such as ECG [13]. 

The study proposes a complex method for automated 
classification of ECG signals based on Siamese neural net-
works, which allows to effectively detect cardiovascular 
pathologies, in particular arrhythmias, with a limited 

amount of training data. The main peculiarity of the com-
plex method is a combination of high-resolution electro-
cardiography and vector cardiography methods for pre-
processing ECG signals, as well as application Siamese 
neural network architectures of cardiac arrhythmia clas-
sification by detecting and analysing structural differ-
ences between the signal under study and the reference 
feature vector of signals with pathology. In the study,  
the input data dimensionality was reduced by transform-
ing from the 12-lead system to the orthogonal Frank sys-
tem of ECG, which allowed to get more compact but in-
formative signal representations. In addition, a special 
format of input data was used, which is presented in  
the form of averaged cardiac cycles and generalised fea-
ture vectors extracted by PCA, which ensures efficient 
detection of key features of ECG signals while keeping 
the low dimensionality of the input data. In the Siamese 
neural network architectures of the proposed method, 
two-layer Convolutional subnets are used to facilitate  
a more accurate comparison of signals by analysing  
the cardiac cycle shape and ECG signal structure simulta-
neously. 

II. MATERIALS AND METHODS 

A. Classical Siamese neural network  
construction basics 

The Siamese neural network of the classical architec-
ture (Fig. 1) consists of two identical subnetworks with 
the same weights that are updated synchronously during 
training. This feature requires the same dimensionality of 
the data that are received at the input of each subnet-
work. The main function of the hidden layers of this net-
work is to transform the input information that similar 
input data is transformed into similar output vectors, and 
dissimilar data is transformed into output vectors that 
are significantly different. 

The layers of the Siamese neural network act as  
a transformation function that focuses on the key fea-
tures that determine the differences between the input 
data. This makes it possible to create distinctive output 
vectors even for input data with a high degree of similar-
ity, such as ECG signals. 

 

Fig. 1 Architecture of a classical Siamese neural network 
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After processing the data by layers of the Siamese 
network, the resulting vectors are estimated using a sim-
ilarity metric (delta function) [14]. In most cases, simple 
delta functions are used, such as Euclidean distance or 
cosine similarity, which provide a scalar output. How-
ever, sometimes the delta function can be expressed by 
combinations of several metrics. In this case, an addi-
tional layer can be used to assess the degree of differ-
ence, which decides on the similarity of the output vec-
tors. 

The hidden layers of a Siamese neural network can 
have different architectures depending on the task. For 
example, Convolutional layers are used to process two-
dimensional data, and recurrent layers are used to ana-
lyse time sequences. 

Convolutional layers of neural networks use special-
ised filters (Convolutional kernels) to extract morpholog-
ical features from the signal, which allow analysing the 
signal at different levels of detalisation [15]. Convolu-
tional have the following parameters: 1) The Convolution 
kernel is a small matrix that moves over the input signal, 
calculating the scalar product between the kernel nodes 
and the corresponding parts of the signal. 2) Stride is  
the parameter that determines the number of positions 
of the Convolution kernel shift during each movement 
along the input signal. 3) Padding is parameter that  
determines the addition of a frame of zeros or other  
values around the boundaries of the input signal to pre-
serve the dimensionality of the output signal or to  
ensure that the kernel correctly covers the entire input 
space. The correct choice of these parameters deter-
mines how detailed the features will be extracted from 
the input data. The choice of kernel size affects the ability 
of the model to detect features at different scales.  
Increasing the stride can lead to information loss, but at 
the same time, it reduces the computational complexity 
and dimensionality of the data. 

B. Overview of the data for training and 
testing the neural network 

To test the developed model, the database "PTB-XL, 
a large publicly available electrocardiography dataset" 
was chosen as the training data, which contains about 
twenty-two thousand clinically recorded ECGs in 12-lead 
from 18869 patients [16]. Each record is approximately 
10 seconds long. Although the database includes about 
70 different pathological conditions of the cardiovascular 
system, only 20 of them contain a sufficient number of 
records to train neural networks. The following classes 
contain the largest number of records: Normal ECG,  
myocardial infarction, atrial fibrillation, left ventricular 
hypertrophy, left and right bundle branch block, atrial 
and ventricular extrasystoles. The ECG signals of this  
database are presented with 16-bit ADC resolution and 
500 Hz sampling frequency, which makes it possible to 
use HR ECG methods to detect VLP and ALP. 

 

Fig. 2 An example of a cardiac cycle with atrial (a) and ventricular (b) 
late potentials. 

For the study, the signals containing 18 types of car-
diac arrhythmias were selected. In addition, the training 
dataset includes signals with 19 types of cardiac condi-
tions that can cause or be accompanied by different 
types of arrhythmias. Such pathologies  include various 
forms of myocardial hypertrophy, coronary heart  
disease, and heart attack [17]. The signals with existing 
VLPs and ALPs were also used for testing. Signals  
with VLP and ALP were obtained by superimposing arti-
ficially generated late action potentials on a normal ECG. 
The process of action potential propagation was mod-
elled on the basis of the parallel conduction model [18]. 
In addition, normal ECG signals that did not contain any 
pathology were selected for the study. The example of  
a cardiac cycle with the existing VLP and ALP is shown in 
Fig. 2. 

Due to the large number of selected subclasses,  
the amount of training data for each class varied greatly. 
For many diseases, the number of observations did not 
exceed 200. At the same time, classes with 2000 obser-
vations were also involved in the training process, includ-
ing ECG signals corresponding to the normal state.  
To solve this problem, the input data were additionally 
balanced.  

Firstly, to increase the number of observations in  
the samples with less than 500 records, data augmenta-
tion methods were applied [19], such as: 

• Adding fragments of harmonic noise to the signal 
with a signal-to-noise ratio of 18-40 dB; 

• Adding drift of isolines of different shapes; 

• Adding physiological noise (breathing and mus-
cle activity artefacts). 

The parameters of harmonic noise, isoline drift, and 
physiological artefacts were adjusted to ensure that each 
altered ECG signal after augmentation was unique. This 
allowed to avoid repetition of the same modifications 
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within the same disease class and to preserve the diver-
sity of the data for further analysis. For classes with less 
than 150 observations, duplicate augmentation methods 
were used to double the sample size. For classes with 71 
to 150 observations, the sample size was increased 
threefold, and for classes with 31 to 70 observations,  
the sample size was increased fourfold. This approach 
ensured proportional sample expansion depending on 
the initial size of the class data. 

Secondly, for signals with pathologies that contained 
more than 1500 observations, neural network filtering 
was applied to remove records with a high level of noise 
or with the absence of a useful signal [20].  

Therefore, classes with insufficient number of data 
were supplemented using augmentation methods.  
The classes with a large amount of data were reduced by 
removing noise signals, improving the overall quality of 
the training set. 

C. Preparation and pre-processing of data 
for NN training 

In accordance with the proposed complex method, 
twelve-channel signals of electrocardiography (ECG) are 
initially preprocessed. It is a necessary condition for  
improving the efficiency of model training. This stage  
reduces the dimensionality of the input data space,  
improves the structure of the input data, and improves 
their informativity, which leads to better signal pro-
cessing by the neural network. Fig. 3 shows the main 
stages of signal pre-processing required for their input to 
the developed neural networks. 

The first stage (Fig. 3) of signal pre-processing of  
the proposed complex method is noise removal. Accord-
ing to this stage, the first step of processing is input data 
filtering.  

The signals from the twelve-channel ECG were pro-
cessed using a fifth-order low-pass Butterworth filter 
with a cutoff frequency of 150 Hz to remove high-fre-
quency noise. In turn, a third-order high-pass Butter-
worth filter with a cutoff frequency of 0.5 Hz was used  
to eliminate low-frequency noise [21]. In addition,  
the interference of the power grid in the ECG signals was 
also effectively removed using second-order digital notch 
filters configured for cutoff frequencies of 50 and 60 Hz 
with a quality factor of Q = 50 [21]. All signals were sub-
jected to phase-neutral filtering, which ensured  
the preservation of the phase structure of the signal 
without distortion. [22]. 

At the second stage, to reduce the dimensionality  
of the input features, the twelve-channel ECG was trans-
formed into the three-dimensional XYZ space using vec-
torcardiography methods [23]. 

Vectorcardiography is used to diagnose rhythm dis-
turbances, myocardial damage and hypertrophy. To build 
a three-dimensional trajectory of the electrical axis of 

the heart, a Frank lead system is used, which provides 
accurate registration of signals in the frontal (X), sagittal 
(Y), and horizontal (Z) planes [24]. The standard twelve-
lead system records the electrical activity of the heart in 
the frontal and horizontal planes, while the Frank system 
provides a more accurate analysis in the sagittal plane 
[25]. To obtain three-dimensional information, transfor-
mation methods are being developed to convert signals 
from the standard ECG lead system to the Frank lead sys-
tem using linear transformation matrices [26]. This 
makes it possible to build three-dimensional models of 
cardiac electrical activity without using specialised 
equipment. 

For a standard twelve-lead ECG, if one time sample of 
the signal is a vector with dimension of [12x1], then  
the three-dimensional representation of this sample in 
the Frank's lead system could be computed as a matrix 
product: 

[3 1] [3 12] [12 1]XYZ P ECG× × ×= ⋅ , 

where P is the linear transformation matrix. 

The linear transformation matrix used to convert ECG 
signals from the standard lead system to the Frank's or-
thogonal lead system is shown below (Table 1). 

 

Fig. 3 Stages of preparation and pre-processing of the ECG signal for 
application in the developed neural networks 

 

Fig. 4 Vectorcardiogram according to the Frank's lead system, vector of 
electrical activity of the heart in three-dimensional space (a), lead VX 
(b), lead VY (c); lead VZ (d). 
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TABLE 1 MATRIX OF LINEAR TRANSFORMATIONS FROM STANDARD  
TO FRANK'S LEAD SYSTEM [26] 

Lead I II III aVR aVL aVF 
X 0.63 0.24 -0.40 -0.43 0.52 -0.08 
Y -0.24 1.07 1.30 -0.42 -0.77 1.18 
Z 0.06 -0.13 -0.19 0.04 0.13 -0.16 
 V1 V2 V3 V4 V5 V6 

X -0.52 0.04 0.88 1.21 2.13 0.83 
Y 0.16 0.16 0.10 0.13 0.13 0.08 
Z -0.92 -1.39 -1.28 -0.60 -0.09 0.23 

 

 

Fig. 5 Formation of a feature vector of signals with pathology using PCA. 
PCA decomposition vectors of 100 averaged cardiac cycles (a), the sum 
of the first five PCA decomposition vectors (b). 

At the third stage, having a three-dimensional repre-
sentation of the ECG signal, the resulting vector R(t) can 
be obtained: 

2 2 2( ) ( ) ( ) ( )R t X t Y t Z t= + + , 

where X(t), Y(t), Z(t) are projection of a three-dimen-
sional ECG on the X, Y, Z axis. 

The use of this approach in the developed method 
makes it possible to convert a multidimensional, multi-
channel ECG signal into a three-dimensional representa-
tion or a one-dimensional resultant vector. This signifi-
cantly reduces the dimensionality of the training data 
without significant loss of diagnostic information. Alt-
hough such a representation may be difficult for doctors 
to understand, it may be quite sufficient for a neural net-
work, since the resulting three-dimensional representa-
tion or resulting vector R(t) compactly reflects the com-
ponents of the multichannel ECG. 

The next stage of signal preprocessing for the pro-
posed complex method was the normalisation of  
the resulting feature vectors obtained for each observa-
tion [27]. This procedure was carried out to ensure scale 
consistency of the data, increase the model's resistance 
to variability of input parameters, and improve the con-
vergence of the neural network training process.  

The resulting vectors were normalised by scaling the sig-
nals relative to R-peaks. In this case, the amplitude of  
the R-peak of the signal was adjusted to 1 mV. 

At the final stage of signal processing, an averaged 
cardiac cycle was constructed. The averaged cardiac  
cycle is one of the tools of the ECG HR, which allows to 
obtain a QRS complex with a significantly lower noise 
level [28]. The use of the averaged cardiac cycle allows 
for a more detailed analysis of low-amplitude signal com-
ponents, such as VLP, ALP, which can be useful for detect-
ing life-threatening arrhythmias at early stages. To con-
struct an averaged cardiac cycle, the ECG signal was seg-
mented into one-second fragments with R-peak synchro-
nisation. At the next step, the obtained fragments were 
superimposed on each other and averaged. Thus, for 
each resulting ECG signal vector of 5000 samples, an  
averaged cardiac cycle of 500 samples and one second 
duration was constructed. 

Thus, the normalised resultant vector and the gener-
ated averaged cardiac cycle were used as input data of 
the neural network. This approach made it possible to 
preserve the information in the time domain obtained 
from a long-term ECG signal, while also providing a more 
accurate analysis of the cardiac cycle morphology due to 
the shorter but more detailed representation of the sig-
nal in the form of an averaged cardiac cycle. 

D. Construction a feature vector of signals 
with pathologies for Siamese neural net-
work  

For training, the Siamese neural network requires  
the availability of reference signal samples for each  
pathology. Building such samples is also one of the key 
stages of the developed method.  

Since the morphological features of ECG pathologies 
can differ between patients, so it is very difficult to  
extract a reference representation for training a Siamese 
neural network. To identify the main pathological fea-
tures, it is necessary to use a sample of ECG signals, but 
the peculiarity of the architecture of Siamese neural net-
works requires the presence of identical input vectors for 
comparison. Therefore, principal component analysis 
(PCA) was applied to solve this problem. This statistical 
method is aimed at extracting the vectors that explain 
the largest part of the variation in the input data (princi-
pal components). The application of the PCA method 
makes it possible to obtain a feature vector containing 
information that reflects the common characteristics of 
ECG signals from patients with pathology [29]. 

The sum of the first five PCA decomposition compo-
nents was used to form the feature vector (Fig. 5). Each 
principal component is dimensioned in millivolts  
because it is a weighted linear combination of the origi-
nal ECG signals which are also expressed in the same 
units. This decomposition was performed separately to 
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the resulting ECG vector and the constructed averaged 
cardiac cycles. As a result, a feature vector of signals with 
pathology was obtained for training (Fig. 6 c, d). Since  
the Siamese neural network is not aimed at memorising 
disease features like classical neural networks, but  
focuses on assessing the similarity between the signal 
under study and the reference feature vector, such vec-
tors can be generated based on only 100 ECG records 
with pathology. Using PCA to build a feature vector  
allows to obtain a vector that is visually similar to the ECG 
signal.  

This allows to analyse the impact of key signal peculi-
arities on the classification results of a neural network. 
However, the use of the principal component analysis 
(PCA) method to generate a feature vector has limita-
tions, as the first five principal components may not con-
tain enough information to correctly identify signal 
changes with the existing pathology. Therefore,  
the choice of a construction method for pathological fea-
ture vector should take into account specific diagnostic 
characteristics of different leads. 

Fig. 6 shows an example of the signals fed to  
the inputs of a Siamese neural network. Each input signal 
consists of two components: an averaged cardiac cycle 
(Fig. 6 a, c), which contains detailed information about 
the morphology of the cardiac cycle, and a fragment of 
the ECG signal (Fig. 6 b, d), which contains characteristics 
of the heart's electrical activity over a longer time inter-
val which is important for detecting rhythm disturb-
ances. The amplitude scale in the lower plot (c-d) differs 
from the upper (a-b) because it represents the signal  

reconstructed from the first five principal components 
after PCA. Despite the transformation, the resulting sig-
nal also remains millivolt unit, because PCA is a linear 
transformation applied to the original ECG signals. How-
ever, due to the concentration of variance in the first 
components, their summation may lead to amplitude 
amplification in the reconstruction compared to the orig-
inal input signal shown in (a-b). 

Such representation allows the neural network to 
combine an accurate analysis of the shape of individual 
cardiac cycles with the features of a long-term ECG sig-
nal, which helps to improve the accuracy of cardiovascu-
lar disease diagnosis, in particular, the identification of 
arrhythmias and other pathological conditions at early 
stages. 

Although PCA effectively reduces the dimensionality 
and allows to build aggregated representations from  
a small number of pathological ECG signals, it has a num-
ber of limitations. PCA captures global variance, which 
does not always reflect diagnostically significant fea-
tures, such as artefacts or high amplitude signal compo-
nents can produce high variance and predominate in PCA 
decomposition, at the same time, weakly expressed 
pathological features such as late potentials can have low 
variance and therefore may be missed in the low number 
of components. Since PCA operates with linear combina-
tions of data, components with nonlinear patterns  
between ECG elements may be lost or poorly taken into 
account, especially when a limited number of principal 
components are used to form the representation (as in 
our case).  

 

Fig. 6 An example of an input signal vector and feature vector of signals with pathology, averaged cardiac cycle (a), the resulting ECG signal vector 
(b), the result of PCA decomposition of 100 averaged cardiac cycles with pathology (c), the result of PCA decomposition of 100 input feature vectors 
with pathology (d). 
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One possible way to improve the feature vector  
extraction quality is combining PCA with nonlinear  
dimensionality reduction methods or use neural net-
work-based features vectors extraction, for example,  
using autoencoder. 

E. Evaluation of neural network training 
quality  

The following measures were used to assess the qual-
ity of neural network training: sensitivity, specificity, and 
overall classification accuracy. They provide a formalised 
characterisation of the ability of the NN model for cor-
rect recognition of disease classes, which is a key aspect 
of analysing its generalisation ability.  

True Positive Rate (TPR) is the measure that reflects 
the proportion of correctly identified positive cases 
among all real positive instances, is calculated as: 

TPTPR
TP FN

=
+

, 

where TP (True Positives) is the number of correctly clas-
sified positive observations; FN (False Negatives) is  
the number of positive observations that were mistak-
enly classified as negative. 

The true negative rate (TNR) is a measure that reflects 
the ability of a classifier to correctly identify negative  
instances among all objects belonging to a negative class. 
It is calculated by the formula: 

TNTNR
TN FP

=
+

, 

where TN (True Negatives) is the number of correctly 
classified negative observations, FP (False Positives) is 
the number of negative observations that were mistak-
enly assigned to the positive class. 

Overall Accuracy (ACC) is an integral measure of clas-
sification quality that determines the proportion of cor-
rectly classified instances among all available objects. It 
is calculated by the formula: 

TP TNACC
TP TN FP FN

+
=

+ + +
 

III. DEVELOPMENT OF SIAMESE NEURAL NETWORKS 
MODELS FOR CLASSIFICATION OF ECG SIGNALS 

WITH SIGNS OF ARRHYTHMIAS USING A LIMITED 
AMOUNT OF TRAINING DATA.  

A. Development of a Siamese neural  
network model for VLP and  
ALP classification 

At the initial stage of the study, the ability of the Sia-
mese neural network to recognise a limited number of 
signals with the same type of pathology was assessed. 
This approach made it possible to preliminarily deter-

mine the effectiveness of the developed method for clas-
sifying ECG signals with cardiovascular pathologies. For 
testing, ECG signals with available late ventricular and 
atrial potentials were selected. Thus, the Siamese neural 
network was used to recognise normal ECGs, ECGs with 
VLPs, ECGs with ALPs, and ECG signals with VLPs and ALPs 
simultaneously. 

In order to detect late ventricular and atrial poten-
tials, the first Siamese neural network model was devel-
oped (Fig. 7). To train the neural network to recognise 
VLPs and ALPs, only the first 500 samples of the input  
signal, corresponding to the averaged cardiac cycle of  
the resulting ECG vector, were used. 

For Siamese NN training, the backpropagation algo-
rithm was applied, which adjusts the network's weights 
based on gradient descent. Adam (Adaptive Moment  
Estimation) was selected as the optimizer, combining  
the advantages of Adagrad and RMSprop methods. 
Adam adaptively adjusts the learning rate for each  
parameter by utilizing the first moment (the estimate of 
the mean gradient) and the second moment (the esti-
mate of the mean squared gradient). This approach  
ensures stable weight updates even in complex nonlinear 
spaces. The main advantages of this optimizer are rapid 
convergence, efficient handling of noisy gradients, and 
the capability to avoid local minima, which contributes to 
the generalization ability of the model. 

To train the NN, 3200 ECG records were selected, 800 
for each of the four diagnostic classes. Reference feature 
vectors of signals with pathologies were generated for 
comparison from 100 randomly selected ECG signals 
with VLP and ALP. The training results of the first Siamese 
neural network model were compared with the training 
results of the specialised ECGnet architecture, which was 
trained on the same training data set. For each neural 
network, the batch size was chosen in the amount of 100 
records, and training was performed for 100 epochs. 

 

Fig. 7 Siamese neural network for VLP and ALP classification, averaged 
cardiac cycle of the signal under study (a), feature vector of signals with 
pathology (b), convolutional layers of the neural network (c), fully con-
nected layers of the neural network (d), output layer (e). 
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B. Siamese neural network training results 
for VLP and ALP classification 

The results of training a Siamese neural network to 
detect ECG signals with pathological low-amplitude com-
ponents, namely VLP and ALP, are shown in the Table 2. 

From the analysis of Table 2, it can be concluded that 
the first Siamese NN model classification accuracy for  
the classes of normal, VLP, ALP, and VLP+ALP is higher 
than the accuracy achieved after training by the special-
ised ECGnet NN. The evaluation of the sensitivity and 
specificity measures showed that for the disease classes, 
the specificity significantly exceeds the sensitivity. This 
indicates the difficulty of recognising low-amplitude sig-
nal components, namely VLP and ALP, by neural net-
works. To eliminate this problem, it is necessary to apply 
additional methods of data pre-processing. At the same 
time, the use of the developed Siamese architecture 
leads to an increase in sensitivity, which confirms its  
effectiveness for the diagnosis of cardiovascular pathol-
ogies, in particular those characterised by low-amplitude 
features. Thus, the proposed Siamese architecture has 
the potential for application, especially in cases of diag-
nosis when comparing weakly expressed pathological 
signals changes. 

C. Development of a Siamese neural  
network models for arrhythmia  
classification  

For the multi-class classification task, in case of a lack 
of training data, a second Siamese neural network with  
a larger number of layers was developed.  

The transformed ECG signal received from the patient 
was fed to one input of NN, and the feature vector of sig-
nals with the pathology under study was formed to  
the other input. The model was trained using different 
feature vectors for the same pathology. In the neural net-
work under consideration, different parts of the input 
vector are analysed by two sequences of layers. The first 
sequence is aimed at extracting features from the aver-
aged cardiac cycle. The second sequence extracts fea-
tures from an ECG vector of ten seconds duration. In each 
sequence, the first Convolutional layers process the input 
signal, extracting features at different levels of detalisa-
tion, which allows for more efficient analysis of its struc-
ture and dynamic characteristics. In the subnetwork that 
processes the ECG vector, the first layer is the Pulling 
layer, which reduces the dimensionality of the input data 
from 5000 samples to 1000. This layer works as  
a resampling unit with the selection of the maximum  
coefficients of the Convolutional layer of the NN. After 
the Convolutional layers, both subnetworks have a Flat-
ten layer that converts the multi-channel Convolutional 
result into a single-channel sequence for feeding to  
the fully connected neuronal layer. 

TABLE 2 COMPARISON OF THE CLASSIFICATION QUALITY MEASURES OF THE SIAMESE 
NEURAL NETWORK AND THE ECGNET NETWORK IN THE VLP AND ALP RECOGNI-

TION TASK 

 Norm VLP ALP VLP + ALP 
Siamse net TPR 98% 63% 52% 42% 

TNR 99% 90% 87% 100% 
ACC 98% 83% 78% 95% 

ECG net TPR 84% 32% 24% 34% 
TNR 87% 85% 87% 91% 
ACC 86% 71% 68% 86% 

 

 

Fig. 8 Architecture of the designed Siamese neural network for arrhythmia classification 
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Also, the subnetwork that processes the averaged 
cardiac cycle has a batch normalisation layer to increase 
the stability of the coefficients after the data has passed 
through many Convolution layers. Both subnetworks use 
a Dropout layer that disables 10% to 20% of random neu-
rons during training. These layers are used to increase 
the generalisation power of the model and reduce possi-
ble overfitting. Each subnetwork is ended by several fully 
connected layers that sequentially reduce the number of 
output features. After passing through both subnet-
works, the resultant vectors of 500 samples are gener-
ated and compared using a delta function that estimates 
the distance between them. The last fully connected 
layer used after the delta function determines the dis-
tance between analysed ECG vector and the feature vec-
tor of signals with pathology. The output of the last layer 
is 1 if the distance is small (pathology is detected) and 0 
if the distance is large (the desired pathology is not  
detected). 

D. The Siamese neural network training  
results for arrhythmia classification 

Table 3 shows the results of classifying ECG signals 
with pathologies using the developed second Siamese 
neural network model. The table shows that the size of 
the data in each class does not exceed 2000, and  
the sample size for some pathologies is less than 200. To 
compare the classification results, the architecture of  
the specialised deep neural network ECGnet for ECG sig-
nal classification was chosen [12]. The ECGnet network 
was trained on the same training data as the developed 
Siamese NN. The difference was only in the output data 
format. The ECGnet neural network returned the result 
in the form of a vector of 37 elements in the one-hot  
encoding format. In turn, the developed neural network 
was trained to detect the similarity of the ECG signal  
under study and the feature vector of signals with  
pathology, which was built on the basis of 100 patholog-
ical ECG records. Each network was trained for 100 
epochs, with a batch size of 200. The learning rate was 
set to 𝜂𝜂 = 0.001. Both neural networks were tested on 
identical test data. 

The analysis of Table 3 shows that for almost every 
pathology, the developed NN is more accurate than  
the ECGnet network. The average classification accuracy 
of ECG signals with pathologies was 64% for the ECGnet 
network and 74% for the developed Siamese neural net-
work. The proposed Siamese architecture significantly 
improves the quality of pathology classification based on 
ECG signals. For samples with more than 1000 records, 
an improvement of 19% is observed for "Left anterior 
branch block". For samples with less than 1000 records, 
was obtained the improvement of 28% for "Ischemia in 
the anterolateral leads". For a training set of less than 
200 records, an improvement of 19% was observed for 

"Lateral Myocardial Infarction". The overall average  
improvement in the accuracy of detecting VLP and ALP 
was 9%. Thus, the developed NN architecture also shows 
better results for detecting ECG signals with pathological 
low-amplitude components. It is relevant to note that 
the classification accuracy of VLP and ALP is about 60 %. 
This accuracy can be explained by the fact that other  
pathologies in the dataset have more expressive fea-
tures, which in turn have a greater impact on  
the weighting coefficients of the neural network. 

To solve this problem, it is necessary to additionally 
use methods for extracting low-amplitude ECG compo-
nents. In addition, among the obtained results, there 
were classes of diseases whose classification accuracy 
was low, both using the developed neural network and 
ECGnet. Low classification accuracy is observed mainly in 
the detection of myocardial infarction and coronary 
heart disease. To detect these cardiac conditions, it is 
necessary to analyse the amplitudes of QRS complex 
peaks in different leads. The calculation of the resulting 
ECG vector based on the three-dimensional XYZ repre-
sentation smoothes out amplitude differences in peaks, 
which makes it difficult to detect cardiomyopathies and 
ischemic disorders. To improve the accuracy of ECG sig-
nal classification for this type of pathology, it is better to 
use the XYZ representation of the ECG rather than  
the resultant vector. 

It should be noted that Table 3 presents ECG signals 
with pathologies for which high classification accuracy is 
observed even with a limited sample size. These are 
mainly classes of pathologies characterised by severe 
rhythm disturbances, in particular, "Supraventricular 
tachycardia". The presence of clearly defined electrocar-
diographic signs makes such pathologies easier to iden-
tify by the neural network, which improves the accuracy 
of their diagnosis. 

Compared to traditional classification approaches 
that directly compare the input ECG signals with diagnos-
tic labels, the proposed method based on comparing  
the signal with the reference feature vector is less de-
pendent from balanced data sets or high amount of 
training data. However, its accuracy may be lower in 
cases where pathologies have common or low-amplitude 
features. The comparative results between the classical 
approach based on ECGnet and the proposed Siamese 
neural network method on the mixed PTB-XL dataset are 
presented in Table 3. As shown in Table 3, the model per-
forms well for pathologies with clear patterns (for exam-
ple, 96% accuracy for supraventricular tachycardia), but 
provides limited improvement for complex diagnoses, 
such as ischemia in inferolateral leads or myocardial  
infarction, where the patterns are less clear. These limi-
tations may be the subject of further research. 
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TABLE 3 COMPARISON OF THE ECG CLASSIFICATION ACCURACY FOR SIGNALS WITH PATHOLOGIES USING THE DEVELOPED SIAMESE NEURAL NETWORK AND ECGNET 

ECG Signals with 
Pathology 

Number of 
Observations 

ECGnet 
Accuracy 

Developed 
Network 
Accuracy 

ECG Signals with Pathol-
ogy 

Number of 
Observa-

tions 

ECGnet 
Accuracy 

Developed 
Network 
Accuracy 

Atrial extrasystole 383 52% 68% Right ventricular hypertro-
phy 

141 65% 83% 

Atrial fibrillation 1197 73% 80% Voltage electrocardio-
graphic criteria for left ven-

tricular hypertrophy 

655 52% 62% 

Sinus arrhythmia 686 50% 60% Left atrial overload/en-
largement 

390 51% 64% 

Sinus tachycardia 888 72% 87% Right atrial overload/en-
largement 

281 79% 86% 

Sinus bradycardia 517 64% 78% Non-specific ischemia 918 59% 74% 

Supraventricular 
arrhythmia 

409 62% 77% Ischemia in anterolateral 
leads 

607 50% 78% 

Supraventricular 
tachycardia 

149 99% 96% Ischemia in inferior leads 204 51% 58% 

Paroxysmal supra-
ventricular tachy-

cardia 

160 99% 96% Ischemia in inferolateral 
leads 

190 53% 56% 

Bigeminy of un-
known origin 

167 91% 82% Ischemia in anteroseptal 
leads 

160 51% 71% 

Ventricular extra-
systole 

920 72% 78% Inferior myocardial infarc-
tion 

1532 51% 63% 

First-degree AV 
block 

710 51% 66% Anteroseptal myocardial in-
farction 

1242 56% 71% 

Complete right 
bundle branch 

block 

462 64% 87% Anterior myocardial infarc-
tion 

336 51% 59% 

Complete left bun-
dle branch block 

559 94% 88% Anterolateral myocardial 
infarction 

211 54% 68% 

Incomplete right 
bundle branch 

block 

757 53% 67% Inferolateral myocardial in-
farction 

403 50% 59% 

Left anterior fas-
cicular block 

1038 53% 72% Lateral myocardial infarc-
tion 

169 50% 69% 

Left posterior fas-
cicular block 

192 60% 72% Prolonged QT interval 348 68% 87% 

Wolff-Parkinson-
White syndrome 

239 90% 94% ST-T changes associated 
with ventricular aneurysm 

142 86% 87% 

Prolonged PR in-
terval 

281 51% 57% Late atrial potentials 800 50% 58% 

Left ventricular 
hypertrophy 

1431 56% 69% Late ventricular potentials 800 50% 60% 

Right ventricular 
hypertrophy 

141 65% 83% Average model accuracy  68% 72% 

 

CONCLUSION 
In this study, an approach is proposed to solving  

the problem of classifying ECG signals with cardiovascu-
lar pathologies using Siamese neural networks under 
conditions of limited amount of training data. 

A complex method has been developed that com-
bines high-resolution electrocardiography and vector 
cardiography methods, as well as Siamese neural net-
works, which makes it possible to improve the accuracy 
of cardiac arrhythmias classification. A peculiarity of  
Siamese NNs is the ability to compare the input ECG sig-
nal vectors and the generated feature vector of signals 
with pathology, which allows to effectively identify their 
differences, even with a limited amount of training data. 
To construct the reference vectors the transformation 
from the 12-lead system to the orthogonal Frank system, 
as well as the construction of the averaged cardiac cycle 
and the principal component analysis (PCA) method was 
used. This approach made it possible to create feature 

vectors of signals with pathologies using only 100 obser-
vations. 

In this study, two models of Siamese neural networks 
for the analysis of ECG signals were developed. First 
model is focused on the detection of low-amplitude 
pathological features, such as VLP and ALP. The second 
model is designed for multi-class classification of 18 
types of arrhythmias and 19 associated pathologies,  
including coronary heart disease, hypertrophy, and myo-
cardial infarction. 

The results of the study demonstrated that the pro-
posed Siamese NN has higher accuracy compared to  
the specialised ECGnet network. In the task of VLP and 
ALP detection, the first NN model exceeded the accuracy 
of the classic approach by 10%, while reducing the num-
ber of false-negative predictions. The second NN model, 
designed for multi-class signal classification, improved 
the classification accuracy by 10% on average, and for in-
dividual classes, such as ischemic changes in the anterol-
ateral leads, the maximum improvement was 28%. 
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The obtained results confirm the promising applica-
tion of Siamese neural networks in the tasks of auto-
mated diagnosis of cardiovascular diseases, especially 
under conditions of insufficient amount of balanced 
training data. Further improvement of the method is 
possible by using additional transformations of input fea-
tures to save more information about weakly expressed 

pathological changes in ECG signals, as well as by apply-
ing additional methods to intensify low-amplitude signal 
components. The developed complex method has  
the potential for implementation in modern automated 
cardiac diagnostic systems, particularly for detecting  
arrhythmias and other disturbances in the heart's elec-
trical activity that are characterized by weak manifesta-
tions in ECG. 
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відображають серцево-судинні патології, зокрема аритмії, в умовах обмеженої кількості тренувальних даних. Проблема 
дефіциту навчальних зразків у машинному навчанні для діагностики серцевих захворювань пов’язана з великою різно-
манітністю патологічних станів і недостатньою інформацією для окремих класів у відкритих медичних базах даних.  
Дослідження спрямоване на розробку комплексного методу, який ґрунтується на поєднанні методів електрокардіогра-
фії високого розрізнення та векторкардіографії з архітектурами та методами навчання сіамських нейронних мереж, що 
дає можливість підвищити точність класифікації серцевих аритмій. Особливість запропонованого метода, яка базується 
на здатності сіамських НМ до порівняння, полягає у виявленні та аналізі відмінностей між ЕКГ сигналом, що досліджу-
ється, та сформованим еталонним вектором ознак сигналів з патологією, що дозволяє ефективно ідентифікувати зміни 
сигналів навіть для тих захворювань, які обмежено-представлені в навчальному наборі даних. Крім того, для підви-
щення ефективності навчання був розроблений метод формування еталонного вхідного вектора ознак захворювання, 
який використовується сіамською нейронною мережею для порівняння. Застосування методу головних компонент 
(PCA) дозволило виділити ключові ознаки зі 100 ЕКГ-сигналів із патологіями, що сприяло створенню еталонного вектора 
ознак із мінімальною кількістю тренувальних зразків. Додатково для кожного вхідного ЕКГ-сигналу та еталонного век-
тора розраховувався усереднений кардіоцикл, що сприяло ідентифікації низькоамплітудних компонентів ЕКГ та особ-
ливостей QRS комплексу. Для реалізації розробленого комплексного методу використовувалася база PTB-XL, що містить 
12-канальні ЕКГ-записи, класифіковані за 70 категоріями захворювань. Для зменшення впливу дисбалансу даних засто-
совано методи аугментації, а також методи попередньої обробки шляхом видалення зашумлених сигналів та вибіркове 
скорочення надмірно представлених класів. В рамках дослідження розроблено дві моделі сіамських нейронних мереж. 
Перша модель орієнтована на виявлення низькоамплітудних патологічних компонент ЕКГ сигналів, зокрема пізніх  
потенціалів передсердь та шлуночків. Друга модель, призначена для класифікації 18 типів аритмій і 19 супутніх патоло-
гій, таких як ішемічна хвороба серця, гіпертрофія та інфаркт міокарда. Ефективність запропонованих моделей НМ була 
оцінена шляхом порівняння з мережею «ECGnet» у задачі розпізнавання пізніх потенціалів передсердь і шлуночків. 
Перша модель перевищила точність «ECGnet» у середньому на 10% та зменшила ймовірність хибнонегативних прогно-
зів. Друга модель НМ для багатокласової класифікації, яка охоплювала 37 діагностичних класів з рідкісними захворю-
ваннями, що мають менше, ніж 200 спостережень, перевищила середню точність «ECGnet» на 10%, досягаючи макси-
мального приросту в 28%. Отримані результати дозволяють окреслити подальші шляхи вдосконалення комплексного 
методу. Зокрема, підвищення точності класифікації ЕКГ сигналів з патологіями можливе шляхом використання додат-
кових перетворень вхідних ознак та методів підсилення низькоамплітудних компонент сигналу. 
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