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Abstract—In modern technical systems, clustering serves as a key procedure for structuring, analyzing, and interpreting
large volumes of data, which in turn enhances decision-making efficiency and the optimization of system processes. This
study presents a comparative analysis of the main groups of clustering methods and proposes a novel approach based on
the powerful mathematical framework of cardinal numbers. The theoretical foundations for constructing cardinal number
vectors are revealed, positioning them as a mathematical tool for data representation in clustering tasks. The proposed
approach defines object distances within a selected orthogonal basis using the calculated cardinalities of abstract set
sequences represented as vectors of cardinal numbers. The study explores the formation of these vectors and the computa-
tion of corresponding similarity metrics, followed by the generation of a distance matrix. A practical example illustrates
the calculation of distances between three functions and a reference function based on their respective cardinal number
vectors. It is demonstrated that altering the basis or projections according to the technical problem allows for the formation
of different clusters, reflecting the flexibility and adaptability of the proposed method. The calculations are formalized,
straightforward, and easily algorithmized, which enables the implementation of dynamic clustering. This approach holds
significant promise for use in intelligent data analysis systems and information processing in electronic devices.
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/. INTRODUCTION Clustering methods can be divided into several main

groups, listed in Table 1.
One of the current developments of energy today is

creation of digital smart systems and networks [1] which In all clustering methods is considered use
combine traditional energy infrastructures with Internet  of information that directly describes a phenomenon
of Things technologies. An important component of such ~ With physical properties and dimensions, followed
systems is local objects, the processing of whose data by the determination of distances.

affects the efficiency of control methods, which in turn is

A promising method may be one based on the use
determined by the choice of clustering methods [2-4].

of the relational property used in relational models that
In local systems, clustering faces certain challenges,  Use the concept of cardinal number [34].

such as device heterogeneity, limited energy and infor-
mation capacity of sensor nodes, the need for real-time Il PROBLEM STATEMENT.

data processing, and ensuring network scalability. CARDINAL NUMBER VECTOR METHOD

The aim of the work is to develop a new clustering

The clustering process uses various similarity metrics, ) i )
method using vectors of cardinal numbers, which allows

such as Euclidean distance [5, 6], squared Euclidean dis-

tance [7], Manhattan distance [6, 8], Chebyshev distance ~ t0 move from sequences of some 'speciﬁc quantities
[6], power distance [9], cosine similarity [10] or correla- to abstract sequences while preserving the features of

tion [11], as well as feature sets that reflect key charac-  the sequences and significantly simplifying the subse-
teristics of objects, such as energy consumption level, qguent transition to operations with vectors of cardinal
geographical location, time parameters or technical ~Numbers.

specifications [12].
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TABLE 1. CLUSTERING METHODS

DOI: 10.20535/2523-4455.mea.344933

Methods Advantages Problems Field of application
Hierarchical Visualization through dendrograms, | High  computational complexity, | Data compression, pattern
[13, 14] flexibility in determining the number | sensitivity to "noise" recognition, taxonomy

of clusters
Iterative Easy to implement, efficient for big | The need to determine the number | Customer segmentation, image
[15, 16] data of clusters, sensitivity to outliers processing, Internet of Things
Factorial Hidden variable detection, dimen- | Difficulty of interpretation, need for | Data analysis (sociology, market-
[17] sionality reduction statistical assumptions ing, bioinformatics)
Modal density | Free-form clusters, noise resistance Dependence on parameters, prob- | Anomaly detection, spatial data
estimation lems with different densities analysis
[18, 19]
Using graph | Use of graph-based structures, flexi- | High computational complexity, need | Social network analysis, bioin-

theory [20, 21]

bility for complex relations

for graph tuning

formatics, Internet of Things

Grouping Ease of implementation, non-para- | Sensitivity to data scale, susceptibility | Classification, regression, image

[12, 22] metric, adaptability to "noise" processing, recommender sys-
tems

Grid-based High speed, cluster shape independ- | Accuracy depends on grid resolution Real-time monitoring (Internet

[23, 24] ence of Things, energy consumption)

Model-oriented
[25, 26]

Modeling of complex distributions,
high accuracy

Need to determine the number of
clusters, high complexity

Prediction, classification, image
processing

Fuzzy clustering
[27, 28]

Flexibility for overlapping clusters,
resistance to "noise"

The need to determine the number of
clusters, the choice of the fuzziness
parameter

Image segmentation, data anal-
ysis (biology, marketing)

Neural cluster- | Nonlinear data processing, multidi- | Significant learning time, difficulty in | Complex data analysis, dimen-
ing (machine | mensional data visualization interpretation sionality reduction

learning)  [29-

31]

Hybrid cluster- | Combining the strengths of methods, | Increased complexity, need for careful | Adaptive clustering in dynamic
ing [32, 33] flexibility for heterogeneous data tuning systems

Let us consider a method that allows us to get rid
of the use of dimensions and, in a sense, to abstract from
physical phenomena during clustering, and to determine
the distance between objects in the selected orthogonal
basis based on calculating the powers of abstract
sequences of sets, which are presented in the form
of vectors of cardinal numbers. If necessary, the proper-
ties of objects are taken into account by their weight
coefficients.

For convenience and simplification of teaching, we
will focus on the two-dimensional case.

First, let us move from dimensional quantities
to dimensionless ones and consider the case of
the dependence of some dimensionless function P(t)
from the argument t. Let us locate the values of function
P(t) in the range from P(t)=0 to P(t)=P,,, in inter-

vals P <P(t)<P,,, where (P,—P,_;)=AP . Further we

will count the number of cells h with dimension
T
AP, XAtj, where Atj:tj_tj—l' At!zzm_fl'

i=1,2,...,h,j=1,2,...,2™ %, where 2™} — maximum
number of smallest intervals, m — dimension of the vec-
tor of cardinal numbers along the t axis, T — maximal
interval. Value kp;(t;), which is located in the cells

AP, x Atj, is defined as follows:

1,if P(t) € (AP, x At)
kpi(tj): . s (1)
0, if P(t) & (AP, xAtj)
To the first cell of the cardinal number vector Kp the

number K, is written, which is defined as:

2mfl

Kp= 2 kp(t;). )

j=1
Then the vector of cardinal numbers Kp (trans-

posed), will have the form:

T _
Kp =[Kp1 Kz - Kpi o Kpn |- 3)
We create intervals for the argument t;, in which we

will record the presence or absence of values P(t) for
each interval ti—tiq. That is, the entire interval T is

divided into several intervals, starting from the interval
T itself by gradually decreasing the duration of the inter-

vals — to At; = with j=1,2,...,2™ 1. Value
2m—1

kis(t;), which determines the number of intervals to

which any value corresponds P(t), is defined as follows:

1, If P(t)e(tj_l —t)

G

kst 1.t;)= 0,if P(t)(t; y —t;)

©
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where t;_; =t m — vector dimen-

2m—s.(l_1); tj = tzm—s.l >
sion K;, s —vector cell number K;, /=1 +25"1 _ordinal

number of the partition interval for the corresponding
kes(t ) -

Then the vector KtT , composed of cardinal numbers,
will have the form (transposed):

.
Kl =[Ke Kz - Kyj oo Ko |- (5)

T
A certain law At; :f(—j , according to which inter-
n

val durations are defined, and the ratios between
the intervals themselves are chosen under the conditions
of a specific problem. The simplest law has the form

n=2""1. The cardinal number corresponding to each
interval is calculated using the formula:

m
Kfj = Zktl(tj) .
j=1

In the same way, vectors of cardinal numbers are ob-
tained for other time functions that are included in fur-
ther clustering.

The mesh step, formed for calculating cardinal num-
bers can be determined by the value of the derivative of
the classified functions, which, when moving to discrete
values, allows the use of, for example, a criterion of the
type (P,,1 —PR,)/(t,_1 —t,) <D, where D is a coefficient
determined by the practically possible level of discrete
regulation of such parameters as the amplitude of the
output voltage of the microgrid system, the phase shift
angle, non-linear distortion factor, and others used in the
coordinated connection of microgrids to the general net-
work.

To take into account the importance of individual car-
dinal numbers, it is advisable to use a matrix of weight
coefficients, the values of the elements of which at the
intersection of rows and columns of cardinal numbers in-
dicate the influence of one cardinal number on another,
and the diagonal elements are the own weights of cardi-
nal numbers.

For clustering, it is desirable to have some basic or
reference system and, accordingly, a basic set of vectors.
For this desired reference functions P(t) and At; are

given (in the two-dimensional case, or a set of functions
- in the multidimensional case) and vectors of cardinal
numbers are built.

The clustering process can be carried out in two ways:
1. with using the initial values of the vectors;
2. with using an orthogonal basis.

Next, using the Gram—-Schmidt procedure, a transi-
tion to an orthogonal basis is made, which allows us to

determine the distance between the vectors and their
angles, the values of which are used for clustering, add-
ing the volume of the region of their desired location.

Let us consider examples of the vectors formation of
cardinal numbers and their application for clustering.

1. EXAMPLE OF FORMING VECTORS
OF CARDINAL NUMBERS

Let us consider the formation of cardinal numbers for
the function P (t), which is shown in

For a function P, (t) (this can be, for example, a func-

tion of the power of energy generation by some local ob-
ject) the ordinate axis P,(t) is divided into 4 intervals

P, P,,P;, P, and the abscissa axis t is partitioned into

intervals according to the law n= om-1 (m=1,2,3,4).

According to (1) the numbers kpl(tl):O, kpl(tz):l

, kpl(t3):1'
the first cardinal number K,,; =3. Similarly, the remain-
ing cardinal numbers are defined: Kp2:5, Kp3=5,

. kpl(t8)=0. Then according to (2)

Kp4 =6 . Therefore, the transposed vector of cardinal

numbers KZ,- will have the form:
T
Ky, =[3556].

Let us find the vector KtT for the case shown in

. According to (4) for s=1 we have /=1, so

the number k;1 (0, tg) =k;1(T) =1.Then, the first cardinal
number is K =1. For s=2 we have /=1,2, so
ki>(0,t4)=ki»(0,T/2)=1 and
kiy(ty, tg) =k (T /2,T)=1. Then, the second cardinal

number is K;, =2. Similarly, the following two cardinal

the numbers

numbers are defined: K;3 =4 and K;4 =6.

Therefore, the transposed vector of cardinal numbers

KtT will have the form:

K" =[12 4 6].
P‘I(t)u
4
J 0 1.—1T\1 0o o o o
J o A 1 o o p\ 1
J o /i1 U o o /11
o [1 1 11 o

\
-
= |
N
Ve~+
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Note that with such formation of the vector K; K;T)lr ngl K;3,K1»T,K;b,/<&, and the distances between

the projections of these vectors onto the orthonormal-
Thus, two vectors of cardinal numbers are formed: ized base space.
K, and K;.

the first cardinal number will always be equal to one.

The calculation of the projection of a certain vector
K onto the base space is carried out by the expression:

IV.  EXAMPLE OF SIMILARITY METRICS

CALCULATING USING proj, = p Rop + th Ry - 7)
CARDINAL NUMBER VECTORS Kpb *Kpb K - Kty
Let us consider the calculation of the distances Then the projection K, :
between functions P,(t), A (t), P(t) and the base func-
. 3 , _ . ., 11 , 15 .
tion P, (t)=2 (see ) using projpy; =a-Kp, +b-Kyp :E.Kpb +E'Ktb-

the values of their cardinal number vectors.
. . Similarly, according to (7), we find the projection
First, we find the vectors K, and Ky, of cardinal Koo
p2:
numbers for the basic function P, (t):
. - - 3 5 12 -
pfO]pZ =C'Kpb +d'Ktb =Z'Kpb +§'Ktb .

The distance between the projections of vectors is
calculated by the formulas:

K,=[0 0 8 8], Kj,=[1 2 4 8].

Orthogonal normalized vectors kpb i Ky, of cardinal

numbers have the form:
proj; —proj; =(a—c)-Kyp +(b—d)-Ky,

, 1 1

K;bz{o 0 E E}f © and
o { 1 2 -2 2 }

® Vi3 V13 iz Vi3

For clustering, it is necessary to calculate the distance
between the vectors themselves and between the vec-
tors and the orthonormalized base space. To do this, we ] ] 1 . 3.
calculate the distances between the three vectors given Projp1 = Projpy = _EKpb +1_3Ktba
by the functions A (t), P (t), P(t), and the base space

given by the vectors (6), the vectors of cardinal numbers

proj; —projj|| = /(@ —c)* Kpp +(b—d)* Ky, . (8)
|| =

Then the vector distance between the projections
of vectors K, and K, :

and the distance by the modulus:

of which have the form: \/ 12 3\2
projpy —projp, || = (—] ~128+(—j 13 ~1,09.
Kh=[3 5 5 6].k,=[2 5 6 6], lproi | 16 13
KT3 :[4 5 6 6] In the next step, we calculate the projections of
o .

the base vectors K;b and Kth onto the orthonormal
The vectors K, , Ky, , K, are the same for all three

] base space:
functions and have the form:
. . 5
kK[ =[1 2 4 6] proj,p, =(8+2,0) and projy, =| 632, —— |.
V13
For clustering, it is advisable to calculate the dis-
tances between the projections of the vectors
P,(t) Py(t) R(t)
4 4 4
3| () 0 0 0 0 ¥ 1 0 3 1 1 0 1 1 0 0 0 3 0 ) 0 0 0 0 0 0
] 0 ¥ %+ 1 0/1 \1 o S A V1 o A N1 o 1 O , o0 o o o o 0o 0 ©
R INAS I NS I S R A ) Jd /10 v\ o1l N R I S
) 1 1 1 1 1 1 0 t 1 1 0 1 i 0 1 1 t 1 1 1 1 1 1 1 1 t

oTRTTRTTRTTE
-
-
RN
-
-
ORI
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Then, according to (8), the distance by the modulus
between the projections proj,; and projy,, :

s~

_ (11‘/— 8[] (E—ojzzme’

and the distance by the modulus between the projec-
tions proj,; and projy, :

"projp1 — Projy, " =

2 .
= [_—1j 128+(10j 132,77
16 13

Similarly, we calculate the distances by the modulus
between other projections and compose a matrix D
of similarity metrics (Table 2), which illustrates the data,
using of which allows us to carry out various possible
options for clustering by the projections of some vectors
onto others.

For example, in the cell Dy, the distance between
the projections proj,; and proj,, is equal to 1,09,

which is close to 1, and indicates that these vectors are
practically the same and can be assigned to the same
cluster. However, the projections projp1 and projp2 of

vectors on the projections projpb Ta projy, of vectors

differ significantly. Therefore, clustering depends on
the technical task. In this case, despite the fact that
the vectors are close in power, they differ in time.
The projections prcwjp1 and projp2 of vectors on proj;

are close to each other and by projection proj; they can

also be assigned to the same cluster. The projections
projp, and proj; of vectors on the projection projy, are

also close, and the projection projy,; is significantly dis-
tant from the projection proj,,, proj,z, proj on

the projection Projpp -

Such a variety of variants allows us to form different
clusters depending on the selected projections and
the distances between them.

Thus, the proposed clustering method provides
variations in the selection of clusters by projections,
by defining vectors whose projections differ from others,
and, that is, provides various options for choosing
projections, by a predetermined distance threshold for
clustering. And the transition by the matrix of similarity
metrics from one option to another makes it possible to
take into account various features of systems in time for
dynamic clustering.

It should be noted that the vector of weight
coefficients, which is typically formed based on expert
assessment, should be selected based on the practical
conditions of microgrid operation in the general grid. For
example, the weight of the energy share generated
during hours of peak energy consumption may be several
times greater than the weight, related to quiet periods.
For the given example, the vectors of weight coefficients

for functions A, (t) and Py(t) couldbe [2 1 1 1], and
[4 1 1 1],

vectors by the vectors of weight coefficients significantly
increases the impact of peak loads.

respectively. Multiplying the original

One application of this approach is related to load
analysis in the general power grid to which individual
microgrids with solar panels and wind turbines are
connected. The proposed approach allows for varying
the choice of parameters used to determine
the distances between parameter vectors and for
selection for comparison and clustering.

CONCLUSION

In the proposed clustering method, the transition to
some abstract sequences allows preserving the features
of the original data while significantly simplifying
the subsequent transition to operations with vectors of
cardinal numbers that are formed.

At the same time, the method allows you to use dif-
ferent options for clustering with orientation towards

TABLE 2. MATRIX D OF SIMILARITY METRICS

1 2 3 4 5 6

projp1 projp2 projp3 proj; projpb Projy,
1 proj, 0 1,09 0,76 1,66 5,46 2,77
2 projy, 1,09 0 0,55 1,63 4,37 1,94
3 Projp3 0,76 0,55 0 1,97 4,80 2,50
4| proj 1,66 1,63 1,97 0 4,92 1,79
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a particular base vector or to vectors depending on For any clustering options, the calculations are for-
the selected projections. malized, simple and easily algorithmized, which makes it
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MeTopn, Knactepm3sauil 3 BUKOPUCTAHHAM
BEKTOPIB KapAUHANIbHUX Ynucen
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HauioHanbHUI TEXHIYHWUI YHiBEPCUTET YKpaiHK

"KWiBCbKMM NOMITEXHIYHUIA IHCTUTYT imeHi Irops Cikopcbkoro” R 00syn5v21

Kwis, YKpaiHa

M. O. Jlyk’aHoB, 1) 0000-0001-8930-9992

ITonitexnika I maHchbKa, R 006x4sc24
I'mancek, ITonsma

AHOTaUifA-Y Cy4acHMX TEXHIYHMUX CUCTEeMaX KnacTepusauis € KA4OoBOK MPoLeAypolo ANA CTPYKTYpyBaHHA, aHaNily Ta
iHTepnpeTauii BeAnKux obcAris gaHux, Wo 3abe3neyvye nigsuLeHHA epeKTUBHOCTI NPUAHATTA pilleHb | ONTUMI3aLil CUCTEMHUX
npouecis. B pob6oTi npoBeaeHoO NOPiBHANbHUIA aHANI3 OCHOBHUX FPyN METOAIB KacTepum3alii Ta 3anponoHOBaHO HOBUIA Niaxipg,
A0 Knactepu3alii 3 BUKOPUCTAHHAM NOTY}KHOFO MaTeMaTUYHOro anapaTty KapAuHanbHUX uncen. PO3KpUTO TeopeTUUHi 3acagu
nobyaoBM BEKTOPIB KAPANHANBbHUX YMCEN AK MAaTEMATUUYHOTO IHCTPYMEHTY ANA NPeACTaB/IeHHA AaHUX Y 3aja4ax Knactepusa-
uii. 3aNnponoHOBaHO BU3HAYeHHA BigCTaHel MixK 06’ekTamu 3gilicHIOBaTM B 06paHOMY OpTOroHasnbHOMY 6a3uci Ha OCHOBI nig-
PaxyHKyY NOTyXXHOCTel abCTPaKTHUX NOCNiJO0BHOCTE MHOXWH, NOAAHUX Y BUFNALI BEKTOPIB KapAMHaNbHUX uncen. Po3rnaHyTo
dopMyBaHHA BEKTOPIiB KapAWHANbHUX Yyucen Ta 06UMCNEeHHA BiANOBIAHMX METPUK CXOXOCTI 3 noAanblwmm GopmMyBaHHAM
maTpuui BigcTaHeii. HaBegeHO NpUKAag Po3paxyHKY BiacTaHel MiK Tpboma QyHKUiAMM Ta 6230800 PYHKLiED HA OCHOBI
aHanisy BiANOBiAHMX BEKTOPIB KapAUHaNbHUX yncen. MokasaHo, Wo 3miHa 6a3ncy UM NpoeKLili 3a1eXKHO Bif TEXHIYHOT 3aaaui
[03BonA€ GoOpMyBaTH Pi3HI Knactepwm, WO CBiAYMTb MPO FHYYKICTb i a4anTUBHICTb 3aNpPoONOHOBAHOro nigxoay. Po3paxyHku
¢dopmanizoBaHi, NPOCTi Ta NIErKO aNrOPUTMI3YIOTbCA, WO AAE MOXK/IUBICTb ANA BTiIIGHHA AMHAMIYHOI Knactepusauii. Takui
nigxia € nepcneKTMBHUM 411 3aCTOCYBAaHHA B iHTENIEKTYaZIbHUX CUCTEMaX aHaNi3y AaHuX Ta 06po6Ku iHpopmaL,ii B eNeKTpoH-
HUX NPUCTPOAX.

Kniouoei cnoea: Knacmepusayis; e6eKmopu; KapOUHAAbHI 4Yucaa; MempuKkd CXoMocmi; s0KanbHuili 06’ekm;
opmoHopmosaHuli 6asuc.
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