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Abstract–In modern technical systems, clustering serves as a key procedure for structuring, analyzing, and interpreting 
large volumes of data, which in turn enhances decision-making efficiency and the optimization of system processes. This 
study presents a comparative analysis of the main groups of clustering methods and proposes a novel approach based on  
the powerful mathematical framework of cardinal numbers. The theoretical foundations for constructing cardinal number 
vectors are revealed, positioning them as a mathematical tool for data representation in clustering tasks. The proposed 
approach defines object distances within a selected orthogonal basis using the calculated cardinalities of abstract set  
sequences represented as vectors of cardinal numbers. The study explores the formation of these vectors and the computa-
tion of corresponding similarity metrics, followed by the generation of a distance matrix. A practical example illustrates  
the calculation of distances between three functions and a reference function based on their respective cardinal number 
vectors. It is demonstrated that altering the basis or projections according to the technical problem allows for the formation 
of different clusters, reflecting the flexibility and adaptability of the proposed method. The calculations are formalized, 
straightforward, and easily algorithmized, which enables the implementation of dynamic clustering. This approach holds 
significant promise for use in intelligent data analysis systems and information processing in electronic devices. 
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I. INTRODUCTION 
One of the current developments of energy today is 

creation of digital smart systems and networks [1] which 
combine traditional energy infrastructures with Internet 
of Things technologies. An important component of such 
systems is local objects, the processing of whose data  
affects the efficiency of control methods, which in turn is 
determined by the choice of clustering methods [2–4]. 

In local systems, clustering faces certain challenges, 
such as device heterogeneity, limited energy and infor-
mation capacity of sensor nodes, the need for real-time 
data processing, and ensuring network scalability. 

The clustering process uses various similarity metrics, 
such as Euclidean distance [5, 6], squared Euclidean dis-
tance [7], Manhattan distance [6, 8], Chebyshev distance 
[6], power distance [9], cosine similarity [10] or correla-
tion [11], as well as feature sets that reflect key charac-
teristics of objects, such as energy consumption level,  
geographical location, time parameters or technical 
specifications [12]. 

Clustering methods can be divided into several main 
groups, listed in Table 1. 

In all clustering methods is considered use  
of information that directly describes a phenomenon 
with physical properties and dimensions, followed  
by the determination of distances.  

A promising method may be one based on the use  
of the relational property used in relational models that 
use the concept of cardinal number [34].  

II. PROBLEM STATEMENT.  
CARDINAL NUMBER VECTOR METHOD 

The aim of the work is to develop a new clustering 
method using vectors of cardinal numbers, which allows 
to move from sequences of some specific quantities  
to abstract sequences while preserving the features of 
the sequences and significantly simplifying the subse-
quent transition to operations with vectors of cardinal 
numbers. 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.20535/2523-4455.mea.344933
https://orcid.org/0000-0002-5467-2473
https://orcid.org/0000-0002-3338-2426
https://ror.org/00syn5v21
https://orcid.org/0000-0001-8930-9992
https://ror.org/006x4sc24


344933.2 Електронні системи та сигнали 

 Copyright (c) 2025 О. О. Абакумова, В. Я. Жуйков, М. О. Лук’янов 

DO
I: 

10
.2

05
35

/2
52

3-
44

55
.m

ea
.3

44
93

3 

Let us consider a method that allows us to get rid  
of the use of dimensions and, in a sense, to abstract from 
physical phenomena during clustering, and to determine 
the distance between objects in the selected orthogonal 
basis based on calculating the powers of abstract  
sequences of sets, which are presented in the form  
of vectors of cardinal numbers. If necessary, the proper-
ties of objects are taken into account by their weight  
coefficients.  

For convenience and simplification of teaching, we 
will focus on the two-dimensional case. 

First, let us move from dimensional quantities  
to dimensionless ones and consider the case of  
the dependence of some dimensionless function ( )P t  
from the argument t . Let us locate the values of function 

( )P t  in the range from ( ) 0P t =  to max( )P t P=  in inter-
vals  1( )i iP P t P+< < , where 1( )i i iP P P−− = ∆ . Further we 
will count the number of cells h  with dimension 

i jP t∆ ×∆ , where 1j j jt t t −∆ = − , 
12

j m
T

t
−

∆ = , 

1, 2, ,i h=  , 11, 2, , 2mj −=  , where 12m−  – maximum 
number of smallest intervals, m – dimension of the vec-
tor of cardinal numbers along the t  axis, T  – maximal 
interval. Value ( )pi jk t , which is located in the cells 

i jP t∆ ×∆ ,  is defined as follows: 

 
1, ( ) ( )

( )
0, ( ) ( )

i j
pi j

i j

if P t P t
k t

if P t P t

∈ ∆ ×∆=  ∉ ∆ ×∆
, (1) 

To the first cell of the cardinal number vector pK  the 

number 1pK  is written, which is defined as: 

 
12

1 1
1

( )
m

p p j
j

K k t
−

=
= ∑ . (2) 

Then the vector of cardinal numbers pK  (trans-

posed), will have the form: 

 1 2
T
p p p pi pnK K K K K =    . (3) 

We create intervals for the argument jt , in which we 

will record the presence or absence of values ( )P t  for 
each interval 1j jt t −− . That is, the entire interval T  is 

divided into several intervals, starting from the interval 
T  itself by gradually decreasing the duration of the inter-

vals – to 
12

j m
T

t
−

∆ =  with 11, 2, , 2mj −=  . Value 

( )ts jk t , which determines the number of intervals to 

which any value corresponds ( )P t , is defined as follows: 

 1
1

1

1, ( ) ( )
( , )

0, ( ) ( )
j j

ts j j
j j

if P t t t
k t t

if P t t t
−

−
−

∈ −=  ∉ −
, (4) 

TABLE 1. CLUSTERING METHODS 

Methods Advantages Problems Field of application 
Hierarchical  
[13, 14] 

Visualization through dendrograms, 
flexibility in determining the number 
of clusters 

High computational complexity, 
 sensitivity to "noise" 

Data compression, pattern 
recognition, taxonomy 

Iterative 
[15, 16] 

Easy to implement, efficient for big 
data 

The need to determine the number  
of clusters, sensitivity to outliers 

Customer segmentation, image 
processing, Internet of Things 

Factorial 
[17] 

Hidden variable detection, dimen-
sionality reduction 

Difficulty of interpretation, need for 
statistical assumptions 

Data analysis (sociology, market-
ing, bioinformatics) 

Modal density  
estimation  
[18, 19] 

Free-form clusters, noise resistance Dependence on parameters, prob-
lems with different densities 

Anomaly detection, spatial data 
analysis 

Using graph  
theory [20, 21] 

Use of graph-based structures, flexi-
bility for complex relations 

High computational complexity, need 
for graph tuning 

Social network analysis, bioin-
formatics, Internet of Things 

Grouping  
[12, 22] 

Ease of implementation, non-para-
metric, adaptability 

Sensitivity to data scale, susceptibility 
to "noise" 

Classification, regression, image 
processing, recommender sys-
tems 

Grid-based  
[23, 24] 

High speed, cluster shape independ-
ence 

Accuracy depends on grid resolution Real-time monitoring (Internet 
of Things, energy consumption) 

Model-oriented 
[25, 26] 

Modeling of complex distributions, 
high accuracy 

Need to determine the number of 
clusters, high complexity 

Prediction, classification, image 
processing 

Fuzzy clustering 
[27, 28] 

Flexibility for overlapping clusters,  
resistance to "noise" 

The need to determine the number of 
clusters, the choice of the fuzziness 
parameter 

Image segmentation, data anal-
ysis (biology, marketing) 

Neural cluster-
ing (machine 
learning) [29–
31] 

Nonlinear data processing, multidi-
mensional data visualization 

Significant learning time, difficulty in 
interpretation 

Complex data analysis, dimen-
sionality reduction 

Hybrid cluster-
ing [32, 33] 

Combining the strengths of methods, 
flexibility for heterogeneous data 

Increased complexity, need for careful 
tuning 

Adaptive clustering in dynamic 
systems  

 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.20535/2523-4455.mea.344933


ISSN 2523-4455. MicrosystElectronAcoust, 2025, vol. 30, no. 3 344933.3 

Copyright (c) 2025 О. О. Абакумова, В. Я. Жуйков, М. О. Лук’янов 

DO
I: 10.20535/2523-4455.m

ea.344933 

where 1 2 ( 1) 2
;m s m sj jl l

t t t t− −− ⋅ − ⋅
= = , m  – vector dimen-

sion tK , s  – vector cell number tK , 11 2sl −= ÷  – ordinal 
number of the partition interval for the corresponding 

( )ts jk t .  

Then the vector T
tK , composed of cardinal numbers, 

will have the form (transposed): 

 1 2
T
t t t tj tmK K K K K =    . (5) 

A certain law j
T

t f
n

 ∆ =  
 

, according to which inter-

val durations are defined, and the ratios between  
the intervals themselves are chosen under the conditions 
of a specific problem. The simplest law has the form 

12mn −= . The cardinal number corresponding to each 
interval is calculated using the formula: 

1
1

( )
m

tj t j
j

K k t
=

= ∑ . 

In the same way, vectors of cardinal numbers are ob-
tained for other time functions that are included in fur-
ther clustering. 

The mesh step, formed for calculating cardinal num-
bers can be determined by the value of the derivative of 
the classified functions, which, when moving to discrete 
values, allows the use of, for example, a criterion of the 
type 1 1( ) / ( )n n n nP P t t D+ −− − < , where D is a coefficient 
determined by the practically possible level of discrete 
regulation of such parameters as the amplitude of the 
output voltage of the microgrid system, the phase shift 
angle, non-linear distortion factor, and others used in the 
coordinated connection of microgrids to the general net-
work. 

To take into account the importance of individual car-
dinal numbers, it is advisable to use a matrix of weight 
coefficients, the values of the elements of which at the 
intersection of rows and columns of cardinal numbers in-
dicate the influence of one cardinal number on another, 
and the diagonal elements are the own weights of cardi-
nal numbers. 

For clustering, it is desirable to have some basic or 
reference system and, accordingly, a basic set of vectors. 
For this desired reference functions ( )P t  and jt∆  are 

given (in the two-dimensional case, or a set of functions 
- in the multidimensional case) and vectors of cardinal 
numbers are built.  

The clustering process can be carried out in two ways: 

1. with using the initial values of the vectors; 

2. with using an orthogonal basis. 

Next, using the Gram–Schmidt procedure, a transi-
tion to an orthogonal basis is made, which allows us to 

determine the distance between the vectors and their 
angles, the values of which are used for clustering, add-
ing the volume of the region of their desired location.  

Let us consider examples of the vectors formation of 
cardinal numbers and their application for clustering. 

III. EXAMPLE OF FORMING VECTORS  
OF CARDINAL NUMBERS 

Let us consider the formation of cardinal numbers for 
the function 1( )P t , which is shown in Fig. 1. 

For a function 1( )P t  (this can be, for example, a func-
tion of the power of energy generation by some local ob-
ject) the ordinate axis 1( )P t  is divided into 4 intervals 

1 2 3 4, , ,P P P P , and the abscissa axis t  is partitioned into 

intervals according to the law 12mn −=  ( 1, 2, 3, 4m = ).  

According to (1) the numbers 1 1( ) 0pk t = , 1 2( ) 1pk t =

, 1 3( ) 1pk t = , …, 1 8( ) 0pk t = . Then according to (2)  

the first cardinal number 1 3pK = . Similarly, the remain-

ing cardinal numbers are defined: 2 5pK = , 3 5pK = , 

4 6pK = . Therefore, the transposed vector of cardinal 

numbers T
pK  will have the form:  

[ ]3 5 5 6T
pK = . 

Let us find the vector T
tK  for the case shown in  

Fig. 1. According to (4) for 1s =  we have 1l = , so  
the number 1 8 1(0, ) ( ) 1t tk t k Т= = . Then, the first cardinal 
number is 1 1tK = . For 2s =  we have 1, 2l = , so  
the numbers 2 4 2(0, ) (0, / 2) 1t tk t k Т= =  and 

2 4 8 2( , ) ( / 2, ) 1t tk t t k Т T= = . Then, the second cardinal 
number is 2 2tK = . Similarly, the following two cardinal 
numbers are defined: 3 4tK =  and 4 6tK = . 

Therefore, the transposed vector of cardinal numbers 
T

tK  will have the form: 

[ ]1 2 4 6T
tK = . 

 

Fig. 1 The formation of cardinal numbers 
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3 Note that with such formation of the vector tK   
the first cardinal number will always be equal to one. 

Thus, two vectors of cardinal numbers are formed: 
pK  and tK . 

IV. EXAMPLE OF SIMILARITY METRICS  
CALCULATING USING  

CARDINAL NUMBER VECTORS  
Let us consider the calculation of the distances  

between functions 1 2 3( ), ( ), ( )P t P t P t  and the base func-
tion ( ) 2bP t =  (see Fig. 1, Fig. 2, Fig. 3 and Fig. 4) using  
the values of their cardinal number vectors.  

First, we find the vectors pbK  and tbK  of cardinal 

numbers for the basic function ( )bP t : 

[ ]0 0 8 8T
pbK = , [ ]1 2 4 8T

tbK = . 

Orthogonal normalized vectors ˆpbK  і ˆtbK  of cardinal 

numbers have the form:  

 

1 1ˆ 0 0 ,
2 2

1 2 2 2ˆ
13 13 13 13

T
pb

T
tb

K

K

 
=  
 

− 
=  
 

. (6) 

For clustering, it is necessary to calculate the distance 
between the vectors themselves and between the vec-
tors and the orthonormalized base space. To do this, we 
calculate the distances between the three vectors given 
by the functions 1 2 3( ), ( ), ( )P t P t P t , and the base space 
given by the vectors (6), the vectors of cardinal numbers 
of which have the form:  

[ ]1 3 5 5 6T
pK = , [ ]2 2 5 6 6T

pK = , 

[ ]3 4 5 6 6T
pK = . 

The vectors 
1 2 3

, ,t t tK K K  are the same for all three 

functions and have the form: 

[ ]1 2 4 6T
tK = . 

For clustering, it is advisable to calculate the dis-
tances between the projections of the vectors 

1 2 3, , , , ,T T T T T T
p p p t pb tbK K K K K K  and the distances between 

the projections of these vectors onto the orthonormal-
ized base space.  

The calculation of the projection of a certain vector 
K  onto the base space is carried out by the expression: 

 
ˆ ˆ

ˆ ˆ
ˆ ˆ ˆ ˆ

pb tb
p pb tb

pb pb tb tb

K K K K
proj K K

K K K K

⋅ ⋅
= +

⋅ ⋅
. (7) 

Then the projection 1pK :  

1
11 15ˆ ˆ ˆ ˆ
16 13p pb tb pb tbproj a K b K K K= ⋅ + ⋅ = ⋅ + ⋅ . 

Similarly, according to (7), we find the projection  
2pK : 

2
3 12ˆ ˆ ˆ ˆ
4 13p pb tb pb tbproj c K d K K K= ⋅ + ⋅ = ⋅ + ⋅ . 

The distance between the projections of vectors is 
calculated by the formulas:  

( ) ( )ˆ ˆi j pb tbproj proj a c K b d K− = − ⋅ + − ⋅  

and 

 2 2ˆ ˆ( ) ( )i j pb tbproj proj a c K b d K− = − ⋅ + − ⋅ . (8) 

Then the vector distance between the projections  
of vectors 1pK  and 2pK :  

1 2
1 3ˆ ˆ

16 13p p pb tbproj proj K K− = − + , 

and the distance by the modulus: 

2 2

1 2
1 3

128 13 1,09
16 13p pproj proj
−   − = ⋅ + ⋅ ≈   

   
. 

In the next step, we calculate the projections of  
the base vectors T

pbK  and T
tbK  onto the orthonormal 

base space:  

(8 2, 0)pbproj =  and 5
6 2,

13tbproj
 

=  
 

. 

  

Fig. 2        Fig. 3        Fig. 4 
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Then, according to (8), the distance by the modulus 
between the projections 1pproj  and pbproj :  

1

2 211 2 15
8 2 0 5,46

2 13

p pbproj proj− =

   
= − + − ≈       

, 

and the distance by the modulus between the projec-
tions 1pproj  and tbproj :  

1

2 21 10
128 13 2,77

16 13

p tbproj proj− =

−   = ⋅ + ⋅ ≈   
   

. 

Similarly, we calculate the distances by the modulus 
between other projections and compose a matrix D   
of similarity metrics (Table 2), which illustrates the data, 
using of which allows us to carry out various possible  
options for clustering by the projections of some vectors 
onto others.  

For example, in the cell 12D  the distance between  
the projections 1pproj  and 2pproj  is equal to 1,09, 

which is close to 1, and indicates that these vectors are 
practically the same and can be assigned to the same 
cluster. However, the projections 1pproj  and 2pproj  of 

vectors on the projections pbproj  та tbproj  of vectors 

differ significantly. Therefore, clustering depends on  
the technical task. In this case, despite the fact that  
the vectors are close in power, they differ in time.  
The projections 1pproj  and 2pproj  of vectors on tproj  

are close to each other and by projection tproj  they can 

also be assigned to the same cluster. The projections 
2pproj  and tproj  of vectors on the projection tbproj  are 

also close, and the projection 1pproj  is significantly dis-

tant from the projection 2pproj , 3pproj , tproj  on  

the projection pbproj .  

Such a variety of variants allows us to form different 
clusters depending on the selected projections and  
the distances between them. 

Thus, the proposed clustering method provides  
variations in the selection of clusters by projections,  
by defining vectors whose projections differ from others, 
and, that is, provides various options for choosing  
projections, by a predetermined distance threshold for 
clustering. And the transition by the matrix of similarity 
metrics from one option to another makes it possible to 
take into account various features of systems in time for 
dynamic clustering. 

It should be noted that the vector of weight 
coefficients, which is typically formed based on expert 
assessment, should be selected based on the practical 
conditions of microgrid operation in the general grid. For 
example, the weight of the energy share generated 
during hours of peak energy consumption may be several 
times greater than the weight, related to quiet periods. 
For the given example, the vectors of weight coefficients 
for functions 2( )P t  and 3( )P t  could be [ ]2 1 1 1 , and 

[ ]4 1 1 1 , respectively. Multiplying the original 
vectors by the vectors of weight coefficients significantly 
increases the impact of peak loads. 

One application of this approach is related to load 
analysis in the general power grid to which individual 
microgrids with solar panels and wind turbines are 
connected. The proposed approach allows for varying 
the choice of parameters used to determine  
the distances between parameter vectors and for 
selection for comparison and clustering. 

CONCLUSION 
In the proposed clustering method, the transition to 

some abstract sequences allows preserving the features 
of the original data while significantly simplifying  
the subsequent transition to operations with vectors of 
cardinal numbers that are formed.  

At the same time, the method allows you to use dif-
ferent options for clustering with orientation towards  

TABLE 2. MATRIX D OF SIMILARITY METRICS 

  1 2 3 4 5 6 
  1pproj  2pproj  3pproj  tproj  pbproj  tbproj  

1 
1pproj  0 1,09 0,76 1,66 5,46 2,77 

2 
2pproj  1,09 0 0,55 1,63 4,37 1,94 

3 3pproj  0,76 0,55 0 1,97 4,80 2,50 

4 tproj  1,66 1,63 1,97 0 4,92 1,79 

 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.20535/2523-4455.mea.344933


344933.6 Електронні системи та сигнали 

 Copyright (c) 2025 О. О. Абакумова, В. Я. Жуйков, М. О. Лук’янов 

DO
I: 

10
.2

05
35

/2
52

3-
44

55
.m

ea
.3

44
93

3 a particular base vector or to vectors depending on  
the selected projections. 

For any clustering options, the calculations are for-
malized, simple and easily algorithmized, which makes it 
possible to implement dynamic clustering. 

REFERENCES 
[1]. O. Kyrylenko, B. Stognii, S. Denysiuk, and M. Sopel, “SMART-MONITORING OF ELECTRICAL POWER SYSTEMS”, Tekhnichna Elektrodynamika, 

vol. 2024, no. 5, pp. 48–62, Aug. 2024. DOI: 10.15407/techned2024.05.048. 
[2]. G. J. Oyewole and G. A. Thopil, “Data clustering: application and trends”, Artificial Intelligence Review, vol. 56, no. 7, pp. 6439–6475, Nov. 

2022. DOI: 10.1007/s10462-022-10325-y. 
[3]. B. S. Everitt, S. Landau, M. Leese, D. Stahl, Cluster Analysis, London, Wiley, 2011, 352 p. DOI: 10.1002/9780470977811 
[4]. P.-N. Tan, M. Steinbach, А. Karpatne, V. Kumar, Introduction to Data Mining. 2nd ed. Boston, MA: Pearson, 2021, 856 p. 
[5]. A. Ultsch and J. Lötsch, “Euclidean distance-optimized data transformation for cluster analysis in biomedical data (EDOtrans)”, BMC Bioinfor-

matics, vol. 23, no. 1, Jun. 2022. DOI: 10.1186/s12859-022-04769-w 
[6]. S. A. Afghani and W. Y. M. Putra, “Clustering with Euclidean Distance, Manhattan - Distance, Mahalanobis - Euclidean Distance, and Chebyshev 

Distance with Their Accuracy”, Indonesian Journal of Statistics and Its Applications, vol. 5, no. 2, pp. 369–376, Jun. 2021.  
doi: 10.29244/ijsa.v5i2p369-376 

[7]. Y. Shim, S.-W. Choi, M.-G. Yang, K.-Y. Chung, and K.-H. Baek, “Energy Efficient Distance Computing: Application to K-Means Clustering”, Elec-
tronics, vol. 11, no. 3, p. 298, Jan. 2022. doi: 10.3390/electronics11030298.  

[8]. M. Sari and A. Armansyah, “Manhattan Metric Technique in K-Means Clustering for Data Grouping”, Journal of Information Systems and 
Informatics, vol. 6, no. 3, pp. 1945–1961, Sep. 2024. doi: 10.51519/journalisi.v6i3.841 

[9]. D. Al-Shammary, E. Hakem, A. M. Mahdi, A. Ibaida, and K. Ahmed, “A novel brain EEG clustering based on Minkowski distance to improve 
intelligent epilepsy diagnosis”, Informatics in Medicine Unlocked, vol. 47, p. 101492, Jan. 2024. doi: 10.1016/j.imu.2024.101492. 

[10]. S. Biswas, A. Fole, N. Khare, and P. Agrawal, “Enhancing correlated big data privacy using differential privacy and machine learning”, Journal 
of Big Data, vol. 10, no. 1, Mar. 2023. doi: 10.1186/s40537-023-00705-8 

[11]. N. Wiroonsri, “Clustering performance analysis using a new correlation-based cluster validity index”, Pattern Recognition, vol. 145, p. 109910, 
Jan. 2024. doi: 10.1016/j.patcog.2023.109910. 

[12]. J. AlShaqsi, W. Wang, O. Drogham, and R. S. Alkhawaldeh, “Quantitative and qualitative similarity measure for data clustering analysis”, Cluster 
Computing, vol. 27, no. 10, pp. 14977–15002, Aug. 2024. doi: 10.1007/s10586-024-04664-4. 

[13]. X. Ran, Y. Xi, Y. Lu, X. Wang, and Z. Lu, “Comprehensive survey on hierarchical clustering algorithms and the recent developments”, Artificial 
Intelligence Review, vol. 56, no. 8, pp. 8219–8264, Dec. 2022. doi: 10.1007/s10462-022-10366-3. 

[14]. M. Jasiński, T. Sikorski, Z. Leonowicz, K. Borkowski, and E. Jasińska, “The Application of Hierarchical Clustering to Power Quality Measurements 
in an Electrical Power Network with Distributed Generation”, Energies, vol. 13, no. 9, p. 2407, May 2020. doi: 10.3390/en13092407 

[15]. A. M. Ikotun, A. E. Ezugwu, L. Abualigah, B. Abuhaija, and J. Heming, “K-means clustering algorithms: A comprehensive review, variants anal-
ysis, and advances in the era of big data”, Information Sciences, vol. 622, pp. 178–210, Apr. 2023. doi: 10.1016/j.ins.2022.11.139. 

[16]. M. Ahmed, R. Seraj, and S. M. S. Islam, “The k-means Algorithm: A Comprehensive Survey and Performance Evaluation”, Electronics, vol. 9, 
no. 8, p. 1295, Aug. 2020. doi: 10.3390/electronics9081295. 

[17]. Y. Terada, “Strong consistency of factorial $$K$$ K -means clustering”, Annals of the Institute of Statistical Mathematics, vol. 67, no. 2,  
pp. 335–357, Mar. 2014. doi: 10.1007/s10463-014-0454-0. 

[18]. E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN”, ACM 
Transactions on Database Systems, vol. 42, no. 3, pp. 1–21, Jul. 2017. doi: 10.1145/3068335. 

[19]. D. K. Kotary and S. J. Nanda, “A Distributed Neighbourhood DBSCAN Algorithm for Effective Data Clustering in Wireless Sensor Networks”, 
Wireless Personal Communications, vol. 121, no. 4, pp. 2545–2568, Aug. 2021. doi: 10.1007/s11277-021-08836-y. 

[20]. X. Yang, C. Xie, K. Zhou, S. Song, J. Yang, and B. Li, “Towards attributed graph clustering using enhanced graph and reconstructed graph 
structure”, Artificial Intelligence Review, vol. 57, no. 11, Sep. 2024. doi: 10.1007/s10462-024-10958-1. 

[21]. A. S. Tarasenko, V. B. Berikov, I. A. Pestunov, S. A. Rylov, and P. S. Ruzankin, “A fast consistent grid-based clustering algorithm”, Pattern Analysis 
and Applications, vol. 27, no. 4, Nov. 2024. doi: 10.1007/s10044-024-01354-0. 

[22]. I. Strelkovska, I. Solovska, Yu. Strelkovska, V. Paskalenko, “Kompleksna splain-aproksymatsiia v zadachakh pozytsionuvannia”, Visti vyshchykh 
uchbovykh zakladiv. Radioelektronika, № 65 (7), pp. 445-456, 2022. doi: 10.20535/S0021347022100028. 

[23]. M. Du and F. Wu, “Grid-Based Clustering Using Boundary Detection”, Entropy, vol. 24, no. 11, p. 1606, Nov. 2022. doi: 10.3390/e24111606. 
[24]. M. Al Jreidy, J. Constantin, F. Dornaika, and D. Hamad, “Clustering using graph convolution networks”, Progress in Artificial Intelligence,  

Jan. 2024. doi: 10.1007/s13748-023-00310-z. 
[25]. C. Weber, D. Ray, A. Valverde, J. Clark, and K. Sharma, “Gaussian mixture model clustering algorithms for the analysis of high-precision mass 

measurements”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated 
Equipment, vol. 1027, p. 166299, Mar. 2022. doi: 10.1016/j.nima.2021.166299. 

[26]. S. Sarkar, V. Melnykov, and R. Zheng, “Gaussian mixture modeling and model-based clustering under measurement inconsistency”, Advances 
in Data Analysis and Classification, vol. 14, no. 2, pp. 379–413, May 2020. doi: 10.1007/s11634-020-00393-9. 

[27]. Y. Jie, X. Li, M. wang, F. Zhou, and H. Tan, “Medical image fusion based on extended difference-of-Gaussians and edge-preserving”, Expert 
Systems with Applications, vol. 227, p. 120301, Oct. 2023. doi: 10.1016/j.eswa.2023.120301. 

[28]. H. Huang, “Fuzzy K-means clustering with reconstructed information”, International Journal of Machine Learning and Cybernetics, vol. 16, 
no. 1, pp. 43–53, Jun. 2024. doi: 10.1007/s13042-024-02167-7. 

[29]. A. Javed, D. M. Rizzo, B. S. Lee, and R. Gramling, “Somtimes: self organizing maps for time series clustering and its application to serious illness 
conversations”, Data Mining and Knowledge Discovery, vol. 38, no. 3, pp. 813–839, Oct. 2023. doi: 10.1007/s10618-023-00979-9. 

[30]. M. R. Basarab and K. O. Ivanko, “Deep Learning for the Detection and Classification of Diabetic Retinopathy Stages”, Microsystems, Electronics 
and Acoustics, vol. 29, no. 2, Aug. 2024. doi: 10.20535/2523-4455.mea.309642. 

[31]. D. S. Zaruba, M. Y. Shvets, and Y. V. Khokhlov, “Machine Learning for a Power Consumption and Generation Prediction”, Microsystems, Elec-
tronics and Acoustics, vol. 24, no. 6, pp. 17–21, Dec. 2019. doi: 10.20535/2523-4455.2019.24.6.186996. 

[32]. B. Zhou, B. Lu, and S. Saeidlou, “A Hybrid Clustering Method Based on the Several Diverse Basic Clustering and Meta-Clustering Aggregation 
Technique”, Cybernetics and Systems, vol. 55, no. 1, pp. 203–229, Aug. 2022. doi: 10.1080/01969722.2022.2110682. 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.20535/2523-4455.mea.344933
https://doi.org/10.15407/techned2024.05.048
https://doi.org/10.1007/s10462-022-10325-y
https://doi.org/10.1002/9780470977811
https://doi.org/10.1186/s12859-022-04769-w
https://doi.org/10.29244/ijsa.v5i2p369-376
https://doi.org/10.3390/electronics11030298
https://doi.org/10.51519/journalisi.v6i3.841
https://doi.org/10.1016/j.imu.2024.101492
https://doi.org/10.1186/s40537-023-00705-8
https://doi.org/10.1016/j.patcog.2023.109910
https://doi.org/10.1007/s10586-024-04664-4
https://doi.org/10.1007/s10462-022-10366-3
https://doi.org/10.3390/en13092407
https://doi.org/10.1016/j.ins.2022.11.139
https://doi.org/10.3390/electronics9081295
https://doi.org/10.1007/s10463-014-0454-0
https://doi.org/10.1145/3068335
https://doi.org/10.1007/s11277-021-08836-y
https://doi.org/10.1007/s10462-024-10958-1
https://doi.org/10.1007/s10044-024-01354-0
https://doi.org/10.20535/S0021347022100028
https://doi.org/10.3390/e24111606
https://doi.org/10.1007/s13748-023-00310-z
https://doi.org/10.1016/j.nima.2021.166299
https://doi.org/10.1007/s11634-020-00393-9
https://doi.org/10.1016/j.eswa.2023.120301
https://doi.org/10.1007/s13042-024-02167-7
https://doi.org/10.1007/s10618-023-00979-9
https://doi.org/10.20535/2523-4455.mea.309642
https://doi.org/10.20535/2523-4455.2019.24.6.186996
https://doi.org/10.1080/01969722.2022.2110682


ISSN 2523-4455. MicrosystElectronAcoust, 2025, vol. 30, no. 3 344933.7 

Copyright (c) 2025 О. О. Абакумова, В. Я. Жуйков, М. О. Лук’янов 

DO
I: 10.20535/2523-4455.m

ea.344933 

[33]. H. Nabli, R. Ben Djemaa, and I. Amous Ben Amor, “Improved clustering-based hybrid recommendation system to offer personalized cloud 
services”, Cluster Computing, vol. 27, no. 3, pp. 2845–2874, Aug. 2023. doi: 10.1007/s10586-023-04119-2. 

[34]. C. J. Date, An Introduction to Database Systems, 8th ed. Boston, MA, Addison-Wesley Professional, 2003, 1024 p. 

 

Надійшла до редакції 08 листопада 2025 року 
Прийнята до друку 23 грудня 2025 року 

 

УДК 004.942:621 

Метод кластеризації з використанням  
векторів кардинальних чисел 

 

О. О. Абакумова, канд. філос. наук, доц.,  0000-0002-5467-2473 
В. Я. Жуйков, д-р техн. наук, проф.  0000-0002-3338-2426 
Національний технічний університет України  
"Київський політехнічний інститут імені Ігоря Сікорського"  00syn5v21 
Київ, Україна 

М. О. Лук’янов,  0000-0001-8930-9992 
Політехніка Гданська,  006x4sc24 
Гданськ, Польща 
 

Анотація–У сучасних технічних системах кластеризація є ключовою процедурою для структурування, аналізу та  
інтерпретації великих обсягів даних, що забезпечує підвищення ефективності прийняття рішень і оптимізації системних 
процесів. В роботі проведено порівняльний аналіз основних груп методів кластеризації та запропоновано новий підхід 
до кластеризації з використанням потужного математичного апарату кардинальних чисел. Розкрито теоретичні засади 
побудови векторів кардинальних чисел як математичного інструменту для представлення даних у задачах кластериза-
ції. Запропоновано визначення відстаней між об’єктами здійснювати в обраному ортогональному базисі на основі під-
рахунку потужностей абстрактних послідовностей множин, поданих у вигляді векторів кардинальних чисел. Розглянуто 
формування векторів кардинальних чисел та обчислення відповідних метрик схожості з подальшим формуванням  
матриці відстаней. Наведено приклад розрахунку відстаней між трьома функціями та базовою функцією на основі  
аналізу відповідних векторів кардинальних чисел. Показано, що зміна базису чи проекцій залежно від технічної задачі 
дозволяє формувати різні кластери, що свідчить про гнучкість і адаптивність запропонованого підходу. Розрахунки  
формалізовані, прості та легко алгоритмізуються, що дає можливість для втілення динамічної кластеризації. Такий  
підхід є перспективним для застосування в інтелектуальних системах аналізу даних та обробки інформації в електрон-
них пристроях. 

Ключові слова: кластеризація; вектори; кардинальні числа; метрика схожості; локальний об’єкт;  
ортонормований базис. 
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