OneKTPOHHbIE CUCTEMBI

73

AsIeKMPOHHbIe cucmeMbl

UDC 004.274
T.L. Zakharchenko

National Technical University of Ukraine “Kiev Polytechnic Institute”,

Peremogy ave., 37, Kyiv, 03056, Ukraine.

Adaptive hardware development

The paper is trying to attract attention to per-
spective hardware design methodology. The point
of the methodology is to stress vital role of prag-
matics in hardware design through direct influence
of pragmatics on tools used in process of design.
The author showed basics of pragmatics depend-
ent approach and proposes solution for automated
transition from semantic notation of solution of
problem given to specific syntaxes, described its
implementation.

The design approach introduced has such ad-
vantages as: investment saving, production of cor-
rect solutions and of course support of design
process, which leads to optimal solution. The au-
thor applied proposed approach to hardware de-
sign, and such application allows increasing
speed/chip area ratio in resulting designs. The im-
plementation of adaptive design environment, cre-
ated as the proof of concept proves ability to re-
move margin between software and hardware
compiling the same semantic description of prob-
lem's solution into x86 assembly and Verilog code.
But for now it is not recommended to use this piece
of software in industry, it should be improved with
different design tricks and optimizations to make
designs produced with the adaptive design envi-
ronment truly efficient. In the future the author is
going try to use different algebraic structures in the
adaptive design environment to analyze their effi-
ciency. Reference 5, figures 2.

Keywords: compositional approach,
figurable computing, adaptive hardware.

recon-

Introduction

Nowadays the industries of hardware develop-
ment, as well as of software development experi-
ences crisis. The symptoms of the crisis are well-
recognized. First, it is that developers experiencing
problems with complexity management, as E.
Dijkstra[1] claimed, that software has so deep hier-
archical complexity that programmer should simul-
taneously deal with separate bits and hundreds of
megabytes, the difference in sizes of approximately
1 to 10°. Today’s software is even more complex.
And sometimes developers are applying old meth-
ods of design even they are obviously irrelevant to

task given. With size of projects number of defects
grows too[2]. For example if project is less then 2
KLOC (thousands lines of code), it has 0-25 de-
fects per KLOC. In case of big projects >512 KLOC
it has 4-100 per KLOC. Errors on the early stages
of design are leading to big expanses. For exam-
ple, error in architecture found on the test stage
costs 15 time higher then it would be fixed on archi-
tecture design stage[3]. The other problem is so
called “investments saving problem”. One can not
separate solution of task given from syntax of its
implementation, due to this we have losses of the
quality code when changing development platform.

The root of crisis described is simplified under-
standing of design process and developer’s orien-
tation on the goal without taking process of design
in account. Really, the design process involves
three aspects: pragmatics, semantics, and syntax.
It is descending from pragmatics to semantics and
all of them supplement one another. Such process
widely acknowledged among developers but very
often violated by ignoring pragmatics.

In order to solve or mitigate mentioned above
problems, we propose new design method which
will take pragmatics in consideration and will sup-
port design process of developer. It is incompara-
ble to other approach because it possesses new
qualities which old ones do not have. The method
applicable to both software and hardware design
processes. Problems already faced in software de-
sign will soon become known in hardware design.
So following method will applicable to both hard-
ware and software.

Now consider representatives of existent de-
sign approaches. There are plenty reconfigurable
patterns developed and described in DeHon et al
[4] can be considered as step forward to reusabil-
ity. An effort towards multiplatform code to mitigate
investments saving problem was undertaken by M.
Tarver, creator of LISP based Shen language,
which produces program code in various other lan-
guages [5]. The problem getting more important
with development of new computing platforms for
which old designs can not be applied because of
developer's concentration on result.

Open-closed and compositional approaches

© Zakharchenko T.L., 2014

74 ISSN 1811-4512. ElectronComm 2014, Vol. 19, Ne6(83)

First, let us consider open and closed systems.
In the design process one divides the task on pri-
mary and secondary (important and not important)
parts. Everything is secondary in open system, but
this design system is the most robust system,
where almost everything can be changed, but there
are few tools to conduct these changes. It is up to
developer to create and select tools to design
within this system. Considerable flaw of open sys-
tem is that developer’s design process mostly per-
formed in his or her mind. Contradictive to open
system is closed system approach. Everything is
secondary in such systems. It has a rigid structure
and a few points to change. However it has rich set
of specialized tools to do such changes. Both of
them are not optimal extremes.

Normally, designer does not fallow any one of
these approaches. He or she selects both primary
and secondary parts. But this division is deeply
subjective. And we try too bring a science to this
process of division, because for now it is more art
then science.

Every open-closed system may be considered
as open-closed environment, which can produce
new open-closed system, which can be considered
as open-closed environment too. This iterative
process starts with open-closed system with con-
sists of initial set of genetic structures, which can
be combined to produce derivatives. Those deriva-
tives may be used as genetic structures of iterative
process on the next step (fig. 1). Every step and
selection of initial set of genetic structures is de-
fined by pragmatics.

-~

genetic stuctures of

Select initial set of]
__initial OC-system }

\

oc-environment

T

7 Y
Produce new oc—systerj

. [Consider OC-system asl

by adding new
L genetic structures

Check if
OC-system
is good to solve selected
ass of tasks

NO

[Resulting oc-system]

Fig. 1. OC-system design process

Due to usage of algebraic structures, it is pos-
sible to design pragmatically and mathematically
correct hardware and programs, because they de-
signed with algebraic approach with taking prag-
matics in account and relevant design tools are
provided. So there will be no side effects in result-
ing solution, therefore no bugs. By explicit definition
pragmatics through genetic structures, many mis-
takes on earlier design stages will be eliminated.
Strict appliance of “rule and divide” principle in de-
sign process will help to manage complexity of
task. Investment saving achieved by possibility of
translate such semantic solution to any syntax
needed and by well defined design process string
with pragmatics. The resulting OC-system may be
treated as new “programming language” oriented
on specific class of problems. Costs for new lan-
guage development are very high. C programming
language had been developed from 1969 to 1973
by team in Bell Labs. Java programming language
had been developed from 1979 to 1983 by “Green
Team” in Sun. With proposed approach new lan-
guage design time will be significantly reduced due
to automation of design process. Moreover, devel-
opment time of Java would be cut if C program-
ming language would used as basis for the new
language. But there was no means to use it as ba-
sis. Development of both Java and C continues to
nowadays, but there is no means to support the
process of development of those languages.

Genetic structures form algebra. And every
computational task can be decomposed with Tur-
ing-complete algebra, because, basically, computa-
tional task is function. There are two types of ge-
netic structures: compositions and functions.

Compositions are operations over set of opera-
tions and other compositions.

The expression that describes composition
looks like following:

G=f(f,h,..1,),
where f is composition itself, and f1, f2,...fn func-
tion used as arguments of composition. And func-
tions look like:

F=f(a.h,...a,),
where f is function and a1, a2, an are elements of
carrier set (e.g integers).

The result of composition application is func-
tion. Result of application looks as follows:

F= f(f](X»],Xz,...,Xi),f2(X1,X2,...,Xk),...,

Fo (X4 X940ty Xy), X4 X2, Xy)
i,k <m

© Zakharchenko T.L., 2014

OneKTPOHHbIE CUCTEMBI

75

This approach is applicable to both hardware
and software. Explicit usage of compositions in-
creases correctness and may clarify point of depar-
ture on the start of design process.

Implementation

Proposed methodic can be partly automated in
part where semantic solution translated to syntax.
Software for transition from semantic representa-
tion to syntax was successfully implemented as a
proof of concept. Church's algebra was chosen as
algebraic structure the system. Basic operations of
the algebra are: increment, assignment to zero,
and selection argument by specific index. Compo-
sitions are: application, primitive recursion, and
minimization.

Primitive recursion is composition that takes
two functions as arguments R(g,h). Firstly, it com-
putes initial argument update with function g. Then
iteratively apply function h until stop:

f(X,0)=g(X)
f(X,1) = h(X,0,9(X))

f(X,m+1)= h(X,m,f(X,m))
where X is set of arguments.

Minimization M(f(x4,X5,...,X,)) is to find the
smallest root of equation

f(X4. X0,..Y) = X, ,
where y increments by one starting with 0 until ex-
pression become truth.

On the input semantics solution is passed. The
software parses semantic representation of solu-
tion into semantic tree according to rules chosen
for semantics formalization. Leaves of the tree are
input variables and constants and non-terminal ver-
tices are compositions and metacompositions
(compositions of compositions and operations).

It is selected JSON representation of the tree.
Every vertex represented in fllowing form:

{

"name" :character string,
"id":numeric identifier,
"static": [parameter list],
"arguments":[{"no":1,
"value":argument value},...]
}

The name field is mnemonic designator of func-
tion, performed by specific vertex, id field is nu-
meric vertex identifier for non-ambiguous interpre-
tation of vertices. static field is list of vertex pa-
rameters. They can be terms and/or values. Here

term means semantic representation of other tree.
Term may be an argument of compositions which
are to manipulate them. The arguments field is a
list of function(non-terminal vertex) arguments, in
other words, list of vertices, which are connected to
this one. Every element of list characterized by
number no and value value which is vertex. For
example, a tree, which represents expression
add(INO, mul(IN1, IN2)) looks like this:

{ "arguments": [

{"value": "INO",
"no": 0},
{"value": {
"arguments": [
{"value": "IN1",
"no": 0},
{"value": "IN2",
"no": 1}1],
"static": [],
"name": "mul",
"id": "384009"},
"no": 1
31,
"static": [],
"name": "add",
"id": "415422"}

Add and mul are operations of addition and
multiplication respectively. INO, IN1, IN2 are input
arguments for the expression.

mul384009
add415422

Fig. 2. add(INO, mul(IN1,IN2))

For convenience of perception, the system
produces tree representation of expression (fig. 2).
It has some non-terminal vertices computer not fa-
miliar with, but algorithm of the system can replace
them substituting instead non-familiar non-terminal
vertices compositions of familiar ones: zero gen-
erators, operation of increment, operation of selec-
tion one of arguments to send it to output with
static parameter, which denotes index of selected

© Zakharchenko T.L., 2014

76 ISSN 1811-4512. ElectronComm 2014, Vol. 19, Ne6(83)

argument, and recursion composition. Such com-
positions represented in JSON format too. Vertices
with names starting with "R" represent primitive re-
cursion composition.

The system produces HDL representation from
such tree. To prove universality of the system,
Moreover, generation of x86 64 assembly was
added as well. The system developed with Python
programming language. It is agile enough to modify
the system quickly.

Conclusions

The new design approach introduced has such
advantages as: investment saving, production of
correct solutions and of course support of design
process, which leads to solution of correctness
problem, both mathematical and pragmatical. This
allows to produce solution without side-effects. The
investment saving problem is solved as well. The
implementation of adaptive design environment,
created as the proof of concept proves ability to
remove margin between software and hardware
compiling the same semantic description of prob-
lem's solution into x86 assembly and Verilog code.
But for now it is not recommended to use this piece
of software in industry, it should be improved with
different design tricks and optimizations to make
designs produced with the adaptive design envi-
ronment truly efficient. In the future author is going

YOK 004.274
T.J1. 3axapueHko

try to use different algebraic structures in the adap-
tive design environment to analyze their efficiency.

References

1. A. DeHon, J. Adams, M. delorimier et al.
(2004) «Design patterns for reconfigurable
computing», Field-Programmable = Custom
Computing Machines. 12th Annual IEEE Sym-
posium on, Pp. 13-23.

2. 2. M. Tarver (2013), «The Book of Shen», Up-
front Publishing Limited, P. 404.

3. 3. David S. Alberts (1976), «The economics of
software quality assurance», AFIPS '76 Pro-
ceedings of, Pp. 433-442.

4. 4. R. Camposano, D. Gope, S. Grivet-Talocia,
V. Jandhyala (2012), «Moore meets Maxwell»,
Design, Automation Test in Europe Conference
Exhibition (DATE), Pp. 1275-1276.

5. 5. A. Maltsev (1972), «Algorithms and recur-
sive functions», Wolters-Noordhoff Pub. Co.,
P. 368.

6. 6. V. Redko (1998), «Compositional program-
ming basics», Programmirovanie, vol. 4, Pp. 3—
13. (Rus)

lMocmynuna e pedakyuto 20 ceHmsbps 2014 e.

HauioHanbHWIM TeXHIYHWUIA yHIBepcuTeT YKpaiHn “KUIBCbKMIA NONITEXHIYHUIA IHCTUTYT”,

Byn.lNonitexHiyHa, 16, Kuni, 03056, YkpaiHa.

Po3p06Ka aganTMBHOrro anapartHoro 3abe3neyeHHA

Y cmammi aemop asmop npusepmae ygazy 00 NepcrekmusHoi MemoOuKu po3pobKu arnapamHozo
3abesrneyeHHs. B il ocHO8I nexxume 4YinbHe Mmicue rpasMamuku y pos3pobui anapamHo2o 3abe3rnedyeHHsi
yepes ii 8nnue Ha iHCcmMpymeHmapit, Wo suKkopucmosyemscs y rnpoueci po3pobku. A8mop MosICHIOE OCHO-
8U rpazmMamuKo3asiexxHo20 Midxo0y ma MfporoHye pileHHs 055 asmomMamu4yHo20 rnepexody eid cemaH-
MUYHO20 3arucy supiuieHHs1 3adadi 00 KOHKPEMHO20 CUHMAaKCUCy ma Orfucye pearsizauifo.

3anpornoHosaHa Memoduka po3pobku mae maki nepesaau siK: 36epexxeHHs1 iHeecmuuili, npodyKysaH-
HS1 KOPEKMHO20 pilueHHs ma, 38udalHo, nidmpumka rnpouecy po3pobku, wo npueodums 00 ornmumarib-
Hux piweHb. 3anporoHosaHuli nidxid asmop 3acmocysas 00 KOHCMPY8aHHS arapamHo20 3abe3neyeH-
Hs, wo 0o3eonuno 36inbwumu 8iOHOWEHHS WweudKicmb pobomu/nnowa Kpucmarny. Peanizauyis aGanmu-
B8HO20 cepedosuuia po3pobKu, cmeopeHa sik O0Ka3 KoHuenuii, 00800uUmMb MOXUGICMb Higeslroeamu pi3-
HUUO MK anapamHuM ma rnpoepamMHUM 3abe3rniedeHHsIM 4epe3 KOMIINAyilo CeMaHmu4YHo20 onucy pi-
weHHs1 3adayvi 8 mosy acembriepa abo Verilog. Ane 6esnocepedHbo ye cepedosuuie adarnmueHoi po3po-
b6Ku we He docmamHbO sKiCHe Onsi BUKOpUCMaHHS Ha 8UpPObHUUMSEI, lo2o0 8apmo 3Ha4YHO MoKpawumu.
bion. 5, puc.2.

© Zakharchenko T.L., 2014

OnNeKTPOHHbIE CUCTEMBI 77

KnrouoBi cnoBa: komrosuuitiHuti nioxid, pexkoHgpicyposaHi obyucrneHHs:, adanmueHe arapamHe 3a-
b6e3rneyeHHs.

YAK 004.274

T.J1. 3axapueHko

HaumnoHanbHbIN TEXHUYECKUI YHUBEPCUTET YKpanHbl “KMEBCKUI MNONIMTEXHUYECKUI NHCTUTYT’
Byn.MonuTtexHnyeckas, 16, Kues, 03056, YkpaunHa.

Pa3paboTka aganTMBHOro annapaTtHoro o6ecrneyeHus

B cmambe asmop nbimaemcs npussiedyb 8HUMaHUS K NepcrekmueHolU memoduke paspabomku anna-
pamHo20 obecrieyeHusi. B ee ocHoge nexum OCHOo8oronazarowasi posb npazMamuku 3adadu e paspa-
bomke annapamHoz2o obecrieyeHusi MocpedcmeoM 8/IUSHUS OHOU Ha UHCMPYyMeHmapud, Ucrnonb3yembil
8 rnpouyecce paspabomku. Aemop 0b6bsICHSIem OCHO8bI fpasMamuKo3asuUCcUMOoe0 rpouecca paspabomku u
npednazaem peweHue 0715 agmoMamu4ecKo20 nepexoda om ceMaHmu4yeckol 3anucu peweHusi 3adadyu
00 KOHKpemHOo20 cuHmakcuca, onuchkleaem peasnusauuto.

lNpednoxeHHasi MemoOuka pa3pabomku uMmeem makue rpeuMyuiecmea Kak: coxpaHeHue UHgecmu-
yud, npodyyuposaHue KOPPEKMHO20 peweHus U, KOHe4YHo, noddepixka rnpouecca paspabomku, 4mo rnpu-
eodum K ornmumaribHOMYy peweHuro. NpednoxeHHbIU Mo0Xod asmop MPUMEHUST K KOHCmpyupogaHUK arl-
rnapamHo2o obecriedeHusi, 4Ymo 0380J1USI0 y8esu4Umb OMHOWEeHUEe cKkopocmb pabomsi/nnowads Kpu-
cmanna. Peanusayusi adanmugHoli cpedbl pa3pabomku, co30aHHas kak 0oKka3amesibCmeo KOHUernuuu,
dokasbigaem 803MOXHOCMb HUBEUPO8amb pasHULYy Mexdy rnpozpaMMHbIM U annapamHbiM obecrieye-
HueM rnocpedcmeoM KOMMUMAUUU CeMaHmuU4yeCcKoa20 ornucaHusi pelweHust 3adadqu 8 Koo si3bika accembiie-
pa nubo e Verilog. Ho Ha ce200HsI KOHKPEMHO 3mo peweHUe He peKoMeHOyemcs UCroib308amb Ha Ipo-
uszeodcmee, e2o crnedyem 3HaqyumerbHo yrydwums. bubn. 5, puc.2.

Knrodeenle cnoea: KOMMIO3UUUOHHbIU 100X00, peKoHuaypupyembie 8blHUCIEHUs], alanmueHoe ar-
napamHoe obecrieyeHue.

Cnucok ncnosib3oBaHHbIX NCTOYHUKOB

1. E.W. Dijkstra On the Cruelty of Really Teaching Computing Science (EWD-1036) . — center for
American History, University of Texas at Austin, 2004.

2. Jones, T. Capers Program Quality and Programmer Productivity .— IBM technical report TR 02.764.
— 2004. — pp. 42-78.

3. Steve McConnell Code Complete. — Microsoft Press, 2009. — 960p.

4. A. DeHon, J. Adams, M. delLorimier et al. Design patterns for reconfigurable computing. // Field-
Programmable Custom Computing Machines. 12th Annual IEEE Symposium on. — 2004. — pp. 13-
23.

5. M. Tarver, The Book of Shen .— Upfront Publishing Limited, 2013 .— 404 p.

© Zakharchenko T.L., 2014

