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Different permutation entropy patterns of electroencephalogram
recorded during epileptiform activity

Behavior of permutation entropy for the orders
from 3 to 7 was shown for the electroencephalo-
gram (EEG) containing epileptiform activity. It was
revealed that changing the order in the range from
3 to 7 has no significant effect on the results. Two
different EEG groups containing epileptiform activ-
ity were distinguished, one with the tendency to a
permutation entropy decrease in areas where epi-
leptiform activity persists, another with increase of
permutation entropy during epileptiform activity.
Reference 17, figures 6.
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Introduction

More than 50 million people worldwide are
affected by epilepsy which is one of the most
common neurologic disorder. It is characterized by
(repeated) seizures caused by excessive abnormal
synchronous activity of neuronal groups in the
brain. Clinical manifestations of epilepsy are
unforeseen and abrupt motor phenomena, loss of
consciousness, psychic and sensory symptoms
etc., causing the low everyday life quality of
sufferers. Despite the availability of variety of
antiepileptic drugs, one third of patients have
intractable seizures. For those positively reacting to
treatment, therapy quality control must be
conducted. Due to this fact, the need for automated
techniques for epileptic seizures prediction and
control is of great current interest. The most
widespread way to analyze brain functioning in
healthy and epileptic conditions is to apply various
signal analysis techniques to the
electroencephalogram (EEG) signal. This is the
multichannel signal reflecting the time variations of
brain biopotentials.

While many signal processing techniques are
available for EEG analysis and classification,
nonlinear approach to brain electrical activity
analysis was paid many attention recently. A
variety of techniques for nonlinear signal analysis
have been developed, which allow better

characterization of spatial and temporal dynamics
of epileptic processes in the brain: effective correla-
tion dimension, entropy related measures,
Lyapunov exponents, similarity index, phase syn-
chronization, nonlinear interdependency and other
measures for generalized synchronization [8].
Entropy analysis of brain activity is widely used for
analysis of brain electrical activity, since different
types of entropy parameters can reflect
unpredictability,  chaoticity, = complexity = and
nonlinearity of brain activity. One of the most
commonly used entropy measure is Permutation
Entropy (PE) [5], which reflects dynamics in time
series of various complexity and over different time
spans. PE gives quantitative characteristics of
symbol patterns in EEG, and has two adjustable
parameters to be set before calculation: PE order
which controls the number of permutations and in
this way influences the number of unique patterns
which could be observable in the signal, and PE
time lag corresponding to the duration of each
pattern.  Depending on the parameter’s
combination, one can get various values of PE [3,
12, 4].

It is generally assumed and experimentally
proven on different datasets that complexity of
EEG becomes less in ictal than in interictal period
[2, 6, 9, 10, 11, 14, 16, 17]. Due to this fact it is
possible to build classification system for
distinguishing between seizure and normal activity
and seizure prediction system as well. To do this,
PE of EEG in different conditions should be studied
for wide range of parameters (order and time lag)
to get the optimal parameter set with respect to
selectivity and specificity.

In paper [16] the study on genetic absence
epilepsy rats was performed and PE was
investigated as a tool for seizures prediction. It is
shown that permutation entropy can track
dynamical changes in EEG and can reflect
transient dynamics prior to seizure in half of cases
(169 out of 314) with the average anticipation time
around 4.9 sec. In this study the EEG epoch
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duration was restricted by 1 sec, and PE of only
one order and time lag combination (m=4, I=1) was
used, which is insufficient.

In the work [17] authors presented preliminary
results on detection of qualitative and quantitative
dynamical changes in the clinically characterized
brain wave data from epileptic patients. In the
result they showed that the dynamics of the brain
first becomes more regular right after the seizure,
then its irregularity increases as it approaches the
normal state, and concluded that PE has indicated
all the seizures present in the analyzed data. They
studied recordings from deep-brain electrodes from
three patients and used PE order m=5 time window
of 2048 samples (with 200 Hz sampling frequency)
and time lag |=3 for their studies. Other orders and
time lags have not been investigated in that paper.

Distinct vigilance states are also typically
characterized by different degrees of regularity of
EEG. Paper [6] was aimed to verify the reliability of
permutation entropy in the detection of fluctuation
of vigilance levels and in seizure prediction from
scalp EEG. The goal was to test the capability of
PE to distinguish between preictal and interictal
states on the basis of scalp EEG. In the paper only
three patients of different age and sex (17, 36 and
47 years old) were used, which is not sufficient for
deriving any statistically proven results. Main result
is the notion that all seizures occurred in
association with the transition of vigilance states,
and PE was able to discriminate between different
vigilance states, independently of the occurrence of
seizures. Hence, the good separability between
pre- and interictal phases might depend exclusively
on the coincidence of epileptic seizure onset with a
transition from a state of low vigilance to a state of
increased vigilance. Nevertheless this result is very
important in enhancing the PE behavior in various
brain states, in the paper only one PE order and
time lag were used (m=4, 1=1).

In paper [10] permutation entropy was used as
a feature for automated epileptic seizure detection
by Support Vector Machine (SVM) classifier. PE of
order m=3 and m=4 was used as a feature for
automated seizure detection, the best average
discrimination of 93.55% is obtained for seizure
activity versus activity obtained from awake healthy
volunteers with eyes open. PE values for 1 sec.
segments were used as a feature for linear and
non-linear SVM, and time dependence of PE
during seizure-free, pre-ictal and ictal periods was
not considered, moreover, EEG from different
subjects was used for discrimination.

Discrimination analysis between normal and
epileptic EEG in the presence of additive Gaus-
siannoise was performed in [14]. As indicative
parameters, PE and its mean and mean deviation
were used for the same dataset as in
abovementioned paper. The results indicated that
the proposed measures can distinguish normal and
epileptic EEG signals with an accuracy of more
than 97% for clean EEG and more than 85% for
highly noised EEG signals. In this study the time
lag was changed from 1 sec to 30 sec, but for only
one order (not specified).

In the paper [9], a spatio-temporal analysis of
EEG synchronization based on trend of EEG
Permutation Entropy in patients affected by
absence seizure is proposed and the results are
compared to the results obtained with a group of 40
healthy subjects. It was found that fronto-temporal
areas appear constantly associated to PE levels
that are higher compared to the rest of the brain,
whereas the parietal/occipital areas appear
associated to low-PE. While this is an important
result, the study of PE order and time lag influence
on synchronization characteristics was not
conducted.

In the study reported in [11], auto mutual
information which is derivative of PE is analyzed to
evaluate EEG dynamics. In the result, authors
showed that the permutation entropy was not
effective in discriminating interictal phase from
preictal phase. Again, only one PE parameter set
was used, order m=5 and time lag |=1. Effect of
order to identify patterns of epileptic activity has
been considered previously [2]. But the research
was conducted only for two EEG signals: EEG of a
healthy person and signal contained only epileptic
patterns.

The previous results don’t give a complete
picture of PE behavior during the periods of EEG
transition from normal background activity to ictal
activity for different orders. PE has not yet been
studied systematically for wider range of orders for
epileptic seizure onset. This can contribute to the
improvement of prediction and detection of
seizures. This paper aims to study PE dependence
on the wider range of orders for EEG containing
periods of normal activity, seizure onset and
seizure oscillations.

This paper is organized as follows. In Section 1
the mathematical background of Permutation
Entropy is presented, in Section 2 the experimental
results on time-entropy analysis for EEG before,
during and after seizure onset are given, and some
discussion takes place. Last section concludes the
research.

© Avilov 0.0., Popov AA., 2014



8 ISSN 1811-4512. ElectronComm 2014, Vol. 19, Ne1(78)

1. Mathematical basis of Permutation Entropy

The PE is measure of disorder (randomness) of
information contained in comparing the consecutive
values of the signal, and it uses the relative fre-
quencies of various patterns encountered in signal
samples. Such approach benefits from the fact that
PE does not depend on the signal values and uses
only the symbol sequence.

Permutation entropy of integer order m (m=>2)
of the signal x[n], n=0..N-1 is given [5] by:

m!
PermEn, (m,l) = —Zp(zrj)logp(ﬁj).
Jj=1

This value is the measure of the amount of
information contained in comparing m consecutive
signal samples over some time interval. To calcu-

late PermEn, (m,l), m successive samples of x[n]

with time lag [/, e N, >1 should be selected

starting from the first sample in the time window of
interest:

v [i]= x[i].x[i +1],x[i+21],
x[i+31],...x[i+(m=-1)1] ~
where i=1..N-(m-1)/, to obtain N—-(m-1)/
embedded signal patterns v, [i].
Embedded pattern v;[i] thus consists of m dif-

ferent numbers, which represent one of m! possi-
ble permutations. Therefore each pattern v, [l] can

be considered as one of m! permutation [14], and
is denoted 7;, j =1...m! For signal x[n] the relative

frequency of permutation 7; is defined as:

a(J)

Pl) = N1y
where q(j) is the number of occurrence of permu-
tation z; .

It should be noted that method of calculating
the PE [5] does not allow situation where the
neighboring signal samples have the same value.
But in real applications there is the problem of
limited distribution capacity of
electroencephalographs. Therefore  sometimes
there is the presence of the identical neighboring
samples in the electroencephalograms. Example of
solution of this problem is presented in the paper
[15].

PermEn, (m,l) has

values in the range

0 < PermEn, (m,l) <logm! PermEn, (m,/)=0 cor-

responds to the case when signal values are totally
predictable, they are only ascending or descend-

ing. PermEn, (m,l) =logm!corresponds to the case

when signal contains all possible patterns with
equal probability (the signal values are random
numbers). To get rid of the PE dependence on the
order, normalized PE is introduced with values
lying between 0 and 1:

PermEn(m,l) = J=1

logm!
PermEn(m,I) values depend on the order and

lag:

— order m affects the number of patterns can be
found in the signal. Order m equals to the
number of samples to be taken from the signal
to construct one pattern. Selecting large order
leads to finding more patterns in the signal, i.e.
more variations of successive samples’
combinations;

— lag | is responsible for the time interval be-
tween signal samples with which they are
elected in patterns (Fig. 1).
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Fig. 1. Patterns in signal for different time lags [4]

Signal samples for patterns are picked conse-
quently for the selected time window of analysis
with time step equel to one sampling interval.
There are only limited recommendations on
selection of PE order and time lag. In the original
paper of Bandt [5] usage of comparably low orders
(3-5) is recommended due to the computation
complexity. Order can be related to the variability of
patterns which are to be found in the signal, thus
this consideration can be used as well. In paper [4]
it is recommended to draw a connection between
time lag, sampling rate and time duration of pattern
wherever it is meaningful, but there is no general
recmmendations for selection of time lag for any
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particular case. Hence the selection of time lag and
PE order should be done according to the aim of
research.

In this work we restrict ourselves by orders of
3-7, and time lag was fixed at the minimal possible
time interval between two samples. This was done
for finding the possible order dependence of PE for
the signals of interest, without possible presence of
time lag dependence.

2. Experimental Results and Discussion

We used real EEG signals from public available
Physiobank Database [7] “CHB-MIT Scalp EEG
Database”. This database was previously
described and used in paper [13]. EEGs were
collected at the Children's Hospital Boston, and this

database consists of EEG recordings from pediatric
subjects with intractable seizures. Subjects were
monitored for up to several days following
withdrawal of anti-seizure medication in order to
characterize their seizures and assess their
candidacy for surgical intervention [7].

For our research 12 EEG signals with epileptic
seizures were selected. Recordings were collected
from 8 subjects (3 males, ages 16-22; and 5
females, ages 13-19). All signals were sampled at
256 samples per second with 16-bit resolution. The
International 10-20 system of EEG electrode
positions and nomenclature was used for these
recordings. All signals have 45 seconds length.
Each seizure begins in a time instant near 30th
second. Examples of EEG signals used for the
analysis are given in Fig. 2.
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Fig. 2. Examples of EEG signals from the experimental dataset containing epileptic seizure activity starting
approximately at 30th sec

The aim of the experimental part was to study
PE behavior in wide range of orders, and to track
the changes in PE while transition from interictal to
ictal brain state. We selected the time window du-
ration of 1 sec. and 90% overlapping of successive

time windows, and then calculated PermEn(m,/)

for all signals with time lag equal to one sampling
period. Obtained PE trends for each patients were
synchronized to have the siezure start time at 30"
second, and then averaged to get the common
trend.

During experiments different results were ob-
served for different group of signals. In some
signals (4 EEGs) PE decreased at the time of
epileptic pattern onset and remains low, which is in
agreement with the results reported elsewhere.
This is generally considered as ‘“regular” PE
behavior in case of seizure. PE trend for this case
is presented in Fig. 3, which is in agreement with
the results of other studies.
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Fig. 3. Average PE trend with decay during and after seizure onset

But in the same time for significant group of onset. It can be noted, that before seizure PE has
signals (8 EEGs) the opposite situation was ob- practically the same values (from 0.7 to 0.8) in both
served, when PE increase to the values larger than  groups.
before seizure (Fig. 4) immediately after seizure
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Fig. 4. Average PE trend with immediate increase after seizure onset
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Trends in Figs. 3-4 are obtained for order 3,
and to study if this tendency persists for other or-
ders, we calculated time-entropy dependence of
PE for two groups of EEG signals with different be-
havior. In Fig. 5 the result for EEGs showing

1 -

0.9 - \ \\\\
0.8 \\ \\\\\\\\§§\\\§\\

Order

\

Naed |

“regular” behavior is presented for orders from 3 to
7. In Fig. 6 the surface of PE dependence on the
time and order is presented for the group of EEGs
showing “abnormal” behavior, namely the increase
of PE during and after seizure onset.

Time, sec

Fig. 5. Time-entropy dependence for EEG with PE decay for different orders

Order

Time, sec

Fig. 6. Time-entropy dependence for EEG with PE immediate increase after seizure onset for different orders
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From Figs. 5 and 6 it can be seen that PE
characteristics in each EEG groups have in general
the same shape for all orders. The only difference
is the decrease of offset of PE curve with order
increase, which can be concluded from the obvious
slant of PE surface towards higher orders. For
smaller orders all PE values are larger, and PE
decreases for signal parts before and during
seizure for high orders.

Thus in our experiment with EEG containing
seizure activity we have obtained the phenomenon
of PE increase for significant group of EEGs. To
the best of our knowledge it has not been
previously reported in the literature. Although by
now we can only present a few-case study, we
have to emphasize that despite the fact that orders
are different, there is obvious increase in PE values
after seizure onset for at least some EEGs, which
is not usual in general. Not going deeply into the
nature of this phenomenon due to the lack of
statistical evidence, at the moment we can only
make speculations that the reason might be due to
the different nature of seizures presented in EEGs
from two groups. As reported in many papers, PE
of a signal with epileptiform activity is less than PE
of the EEG signal of a healthy person due to more
regularity in brain functioning during seizure. It is
often explained by shifting of the firing pattern of
the thalamo-cortical neurons to an oscillatory,
rhythmic, synchronized state of the EEG. Under
these conditions, we are intended to observe the
start of PE decline at that time. High PE values are
connected to entirely random sequences. PE
decrease during seizure activity in EEGs of this
group might indicate noisy properties and is
unpredictableness of brain activity. Thus it is very
probable that one can distinguish two different
patterns of ictal EEG with respect to PE behavior:
with increased randomness (large PE) and with
increased orderness (low PE). Such assumption is
needed to be further investigated on larger
datasets.

Conclusions

In this paper permutation entropy of EEG con-
taining seizure activity was studied in wide range of
orders, and the same behavior of EEG PE values
for orders from 3 to 7 was shown during transition
from pre-ictal to ictal stage. Two different types of
EEG signals were distinguished, first with PE
decrease during ictal stage and second with
prominent increase of PE values during ictal stage.
Obtained results suggest that increase of PE order
for the purposes of epileptic activity detection might
not be needed since the common tendency to PE

change (whether increase of decrease) is
presented for all orders.
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