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Теорема Cигорского об определителе суммы матриц и диакоптика 

Рассмотрены основания и приложе-
ния теоремы Сигорского об определителе 
суммы матриц. Предложены новые интер-
претации этой теоремы в базисах двоичных 
векторов и схемных миноров, повышающие 
эффективность использования теоремы при 
аналитическом решении задач матричной 
алгебры и символьно-численном анализе 
электрических цепей по частям. 

Sigorskiy’s Theorem for Sum of Matri-
ces Determinant and Diacoptics. The basics 
and application of the Sigorskiy’s Theorem for 
sum of matrices are examined. The new inter-
pretations of the theorem are given for the bi-
nary vectors basis and schematic minors that 
makes more efficient the use of the theorem for 
the matrix algebra problems analytical solution 
and symbolic-numerical analysis of electrical 
circuits using decomposition. 

Введение 

Артур Кэли (1821–1895) – основатель ал-
гебры матриц – как-то заметил: «Многое можно 
сказать об этой теории матриц…». Такой эпи-
граф Виталий Петрович Сигорский предпослал 
главе «Матрицы» справочного пособия «Мате-
матический аппарат инженера» [1]. 

В фундаментальной монографии [2, с. 9], 
полвека сохраняющей свое значение, отмеча-
ется, что «в связи со все более возрастающей 
сложностью электрических цепей и их элемен-
тов перед теорией схем встала задача создания 
универсальных методов, пригодных для ис-
пользования в различных областях электротех-
ники и обеспечивающих максимальную автома-
тизацию процесса анализа». Методами, удов-
летворяющими этим требованиям стали мето-
ды диакоптики, то есть методы исследования 
электрических цепей делением их на части. 

«Матричный язык», как никакой другой, спо-
собствовал формализации мышления, поэтому 
с начала 60-х годов прошлого века лег в основу 
многочисленных программ моделирования 
электрических цепей и САПР в целом. Для 
обоснования большинства методов теории элек-
трических цепей использовался и используется 
матричный подход. Так было и в случае тополо-
гического метода бисекции (деление схемы на 
две части, анализ подсхем в отдельности и объ-
единение результатов анализа подсхем). 

После Элизара Вульфовича Зеляха, кото-
рый ввел в теорию электрических схем матрич-
ную алгебру [3], трудно найти специалиста, бо-
лее приверженного матричным выкладкам, чем 
В.П.Сигорский. Его по праву можно считать ос-
нователем матричной диакоптики. 

1. Матричная формула бисекции 

Схема отображается матрицей, которая 
представляется в виде суммы подматриц, соот-
ветствующих подсхемам. Важно, что подсхемы 
могут анализироваться независимо друг от дру-
га (одновременно или в разное время) в сим-
вольном или численном виде. Представление 
матрицы в виде суммы двух матриц по аналогии 
с операцией деления схемы можно называть 
бисекцией матрицы. 

Рассмотрим случай полностью заполненной 
матрицы C порядка n=3, представляющей сум-
му двух полностью заполненных матриц A и B 
того же порядка. Представим определитель 
этой суммы через столбцы слагаемых матриц 

∆ = = + + +1 2 3 1 1 2 2 3 3, , , ,c c c a b a b a b . (1) 

В соответствии со свойством линейности 
определителя относительно столбцов можно 
записать 

∆ = + = +1 1 2 3 1 2 3 1 2 3, , , , , ,a b c c a c c b c c .  (2) 

Применяя это свойство относительно вто-
рых и третьих столбцов полученных определи-
телей, имеем 

∆ = + + + =

= + + + +

+ + + +

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2 3

, , , , , , , ,

, , , , , , , ,

, , , , , , , , .

a a c a b c b a c b b c

a a a a a b a b a a b b

b a a b a b b b a b b b

(3) 

Таким образом, в результате отсутствуют 
определители, содержащие элементы в виде 
суммы элементов различных матриц, и получа-
ются определители, образованные из столбцов 
матриц A и B всеми возможными сочетаниями. 

Аналогичный процесс разложения для мат-
рицы det(A+B) произвольного порядка n до по-
следних столбцов включительно, приводит к 
сумме, которая содержит определители сла-
гаемых матриц detA и detB, а также определи-
тели, образованные из столбцов матриц A и B 
всеми возможными сочетаниями. При этом 
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столбцы в таких определителях занимают те же 
места, которые они занимали в матрицах A и B. 

Завершение выражений вида (2) и (3) можно 
представить суммой 

 
+ = + ∆ + ∆ +

+ + ∆ + + ∆ − +
∑ ∑

∑ ∑
det( ) det (1) (2)

... ( ) ... ( 1) det

A B A

s n B
, (4) 

где ∆(s) – определитель, полученный замеще-
нием s столбцов определителя первой матрицы 
соответствующими столбцами второй матрицы. 
Знаки сумм означают, что суммируются опре-
делители всех возможных сочетаний s заме-
щаемых столбцов. 

Для подсчета количества таких сочетаний 
воспользуемся двоичными векторами (ДВ), в 
которых единица будет соответствовать эле-
менту матрицы A, а нуль – элементу матрицы B. 
Например, выражение (4) для случая n=3, со-
держит 8 слагаемых (3), соответствующих ДВ: 
111, 110,101,100,011,010,001,000. Сумма всех 
возможных сочетаний из n элементов (булеана) 

( )S
n  при s=0,1,…,n равна 2n. Именно столько 

слагаемых содержится в (4). 
Выражение (4) пригодно для представления 

слагаемых стоящих под знаками суммы в виде 
миноров матриц A и B – частей или подматриц 
исходной матрицы. В этом и состоит задача 
диакоптики. Воспользуемся, как В.П.Сигорский, 
сравнительно малоизвестным обобщенным 
разложением Лапласа для определителей ∆(s) 
по s замещенным столбцам 

 σ∆ = −∑( ) ( 1)
BB
SSs M M , (5) 

где σ – сумма номеров строк и столбцов, участ-

вующих в формировании минора B
SM  (или 

A
SM ), 

B
SM – минор матрицы B, выделенный на сово-

купности s строк; 
A
SM – минор (n–s)-го порядка 

матрицы A, дополнительный к минору B
SM . 

В основе выражения (5) лежит понятие ал-
гебраического дополнения минора M порядка s, 
расположенного в строках с номерами i1, i2, …, is 
и столбцах с номерами j1, j2, …, js некоторой 
квадратной матрицы α порядка k  

 += − α 1, 2,...
1, 2,...( 1) det ,s t i i ik
j j jkM  (6) 

где α 1, 2,...
1, 2,...det i i ik
j j jk – определитель матрицы по-

рядка n–k, полученной из матрицы α вычерки-
ванием строк и столбцов минора М; 
s=i1+i2+…+ik, t= j1+j2+…+jk. Выражение (6) перво-
начально было использовано в теореме Лапла-

са о разложении определителя матрицы по не-
которому множеству ее строк или столбцов [4]. 

Строго говоря, фактическими авторами ре-
зультата (6), лежащего в основе теоремы, припи-
сываемой «молвой» Лапласу, являются, не толь-
ко П.Лаплас (1773 г.), но и А.Вандермонд (1771 г.), 
Э.Безу (1779 г.), а законченное решение сформу-
лировал и доказал О.Коши в 1779 году [4]. 

С учетом (5) и (6) из (4) получается другое вы-
ражение для определителя суммы двух матриц 

 
−

σ

=
+ = + − +∑∑

1

0
det( ) det ( 1) det

n
B A
S S

s
A B A M M B ,(7) 

Следует подчеркнуть, что здесь второе 
суммирование, в отличие от формулы (5), ве-
дется не только по минорам, размещенным в 

некоторых s строках, но и по каждой (из ( )S
n ) 

совокупности s строк. 
Формула (7) выражает теорему Сигорского 

об определителе суммы матриц, которая пред-
ставляет собой аналитическое решение задачи 
разложения определителя матрицы C по ее 
частям A и B. Этот результат или его наброски, 
по-видимому, были впервые опубликованы в [5]. 
Простое доказательство теоремы представлено 
в [1]. Приведенный здесь вывод отличается де-
тализацией выражения (4). Сложность сим-
вольного решения обусловлена тем, что опре-
делитель матрицы со сложными элементами в 
виде суммы двух элементов сводится к разло-
жению 2n определителей. Например, для мат-
рицы второго порядка требуется раскрытие че-
тырех определителей этого же порядка, для 
матрицы третьего порядка – восьми определи-
телей (3) и т.д. 

Теорема Сигорского (6), опираясь на свой-
ство линейности определителя и результаты 
Лапласа, не только сводит вычисление опреде-
лителя n-го порядка к вычислению определите-
лей меньших порядков. В качестве определите-
лей меньших порядков предусматривается ис-
пользование определителей не одной, а двух 
матриц, являющихся частями исходной матри-
цы, что является классическим решением зада-
чи матричной диакоптики. 

В.П.Сигорский, осознавая вычислительную 
трудоемкость формул (4) и (6), предупреждал 
[1, с. 211], что «полученные разложения из-за 
своей сложности не пригодны для практических 
вычислений определителей, но они могут быть 
полезны при доказательстве различных соот-
ношений». Время поправило это излишне 
скромное утверждение, поскольку теорема Си-
горского в виде выражения (7) не только легла в 
основу многих результатов теории электриче-
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ских цепей, но и оказалась эффективной для 
практических расчетов определителей в целом 
ряде случаев. 

Результат (7) получил широкое применение 
для формирования полиномиальных схемных 
функций в символьном, численном и символь-
но-численном виде, использования их как в за-
дачах анализа, так и синтеза [6–8]. Однако го-
раздо менее известно использование теоремы 
Сигорского в символьном анализе сложных 
электрических цепей по частям [9–13], чему 
здесь будет уделено основное внимание. 

Первым существенным применением выра-
жения (7) было его использование в теоретиче-
ском подтверждении достоверности диакопти-
ческого метода d-деревьев [9,10]. Спустя два-
дцать лет этот проверенный временем резуль-
тат лег в обоснование диакоптического метода 
схемных миноров (метода двоичных векторов) 
[11–13]. При этом было установлено, что разра-
ботанный ранее за рубежом метод мультисое-
динений для анализа по частям графа Коутса 
[14] и метод нуллорной декомпозиции [15,16] 
также доказываются и обобщаются с помощью 
теоремы (7) [12]. 

Удивительную пригодность выражения (7) 
для машинной (компьютерной) реализации за-
метили и использовали многие специалисты 
[17,18]. Выше уже было предложено исследо-
вать разложение (4) с помощью двоичных век-
торов (ДВ). Этого недостаточно – все возмож-
ные миноры матрицы являются ее инвариантом 
и желательно дать им двоичное отображение. 

2. Формула бисекции матрицы на основе 
двоичных векторов 

Десять лет назад для повышения эффектив-
ности реализации формулы (7) были введены 
ДВ другого типа, которые имеют размерность 2n 
(n – порядок матрицы). Первая половина разря-
дов ДВ соответствует порядковой нумерации 
строк матрицы, а вторая – ее столбцов. ДВ яв-
ляются подмножеством двоичных чисел, первая 
и вторая половина разрядов которых, содержат 
одинаковое количество единиц (или нулей). 

ДВ представляет собой код, указывающий, 
какие строки и столбцы (соответственно первая 
и вторая половина разрядов ДВ) подлежат вы-
черкиванию для образования минора. По опре-
делению минора вычеркивается одинаковое ко-
личество строк и столбцов. Множество ДВ и их 

миноров однозначно задает матрицу соответст-
вующего порядка, то есть является ее двоич-
ным инвариантом, достаточным для учета этой 
матрицы при решении задач в составе любой 
другой матрицы или матриц без необходимости 
непосредственного сложения. 

Формирование множества ДВ матрицы не 
встречает затруднений. Самое простое реше-
ние состоит в том, чтобы перебирать 2n-
разрядные двоичные числа (от 2n нулей до 2n 
единиц) и выбирать те из них, которые содер-
жат одинаковое количество единиц в первой и 
второй половинах разрядов. Это свойство, вы-
текающее из определений минора и ДВ, позво-
ляет получить число ДВ матрицы в виде 

 
=

= ∑ 2

0
( )

n
i
n

i
l . (8) 

В табл. 1 сведены расчеты по формуле (8) 
для матриц различных порядков. 

В силу одинаковой четности номеров строк 
и столбцов взаимно дополнительных миноров 
[1] информацию о знаке слагаемого можно по-
лучить из расположения единиц в одном из век-
торов пары. Принимается во внимание порядко-
вый номер единицы в той или иной половине ДВ. 
Положительный (отрицательный) знак выбира-
ется в случае четной (нечетной) суммы поряд-
ковых номеров позиций, содержащих единицы. 

Имея множество ДВ первой матрицы, можно 
легко получить ДВ второй матрицы, применив 
операцию дополнения двоичного числа. Это 
значит, что единицы в позициях ДВ заменяются 
нулями и наоборот. Следовательно, общая 
формула (7) может быть представлена в виде 

 σ∆ = − ∆ ∆∑( 1) ( ) ( )i
A i B id d , (9) 

где σi – знак i-го слагаемого, определяемый по 
ДВ di , ∆A(di) – минор, соответствующий di , мат-
рицы A; ∆ ( )B id  – минор, соответствующий до-

полнению ДВ id , матрицы B. 
Формула (9), сохраняя основное свойство 

формулы (7) – раздельное использование ми-
норов матриц A и B, является более наглядной, 
что позволяет легко учесть структуру матрицы 
подлежащей бисекции, исключив из рассмотре-
ния слагаемых, у которых один или оба сомно-
жителя равны нулю. Замечательно, что количе-
ство слагаемых формулы (9) известно заранее 
и рассчитывается по формуле (8). 

Таблица 1. Количество двоичных векторов матрицы 
Порядок матрицы 2 3 4 5 6 7 8 9 

Число двоичных векторов 6 20 70 252 924 3432 12870 48620 

l
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В отличие от формулы (7) определитель 
суммы двух матриц по формуле (9) находится 
как декартово произведение их двоичных инва-
риантов. Миноры различных инвариантов ока-
зываются совместными, если их ДВ взаимно 
дополняют друг друга. Это вытекает из класси-
ческого разложения определителя матрицы, из-
начально предложенного Г.В.Лейбницем: опре-
делитель образован суммой произведений эле-
ментов матрицы, взятых по одному из каждой 
строки или столбца. 

Например, определитель матрицы C второ-
го порядка  

 ∆ = = + +1 2 1 1 2 2, ,c c a b a b  (10) 

получается как декартово произведение инва-
риантов матриц A и B, содержащих по шесть ДВ 
вида: 0000, 0101, 0110, 1001, 1010, 1111. Из 36 
пар сомножителей только 6 пар оказываются со-
вместными: 0000–1111, 0101–1010, 0110–1001, 
1001–0110, 1010–0101, 1111–0000. Отсюда по-
лучаем искомые восемь слагаемых, поскольку 
разложения detA или detB содержат по два сла-
гаемых 

 
( )+ = + + +

+ + +
11 22 12 21

21 12 22 11 .
det A B detA a b a b

a b a b detB
 (11) 

Чтобы найти определитель при n=3 (1) и по-
лучить завершенное решение (3) потребуется 
умножить (табл.1) двадцать ДВ матрицы A на 
двадцать ДВ матрицы B. Важно, что выполнять 
такую трудоемкую операцию не нужно – доста-
точно сопоставить каждому из ДВ матрицы A 
его дополнение из ДВ матрицы B. В результате 
получим 20 пар совместных ДВ: 

1) 000000–111111, 2) 001001–110110, 
3) 001010–110101, 4) 001100–110011, 
5) 010001–101110, 6) 010010–101101, 
7) 010100–101011, 8) 100001–011110 
9) 100010–011101,10) 100100–011011, 
11) 011011–100100, 12) 011101–100010, 
13) 011110–100001, 14) 101011–010100, 
15) 101101–010010, 16) 101110–010001, 
17) 110011–001100, 18) 110101–001010, 
19) 110110–001001, 20) 111111–000000. 
Первый и последний ДВ соответствуют detA 

и detB, в которых будет по 6 слагаемых. Каждое 
из оставшихся 18 произведений миноров с дву-
мя и четырьмя единицами даст по два слагае-
мых, поскольку ДВ с четырьмя единицами соот-
ветствуют одному элементу той или иной мат-
рицы. Всего будет 6.2+18.2=48 слагаемых, что 
согласуется с выражением (3): 6.8=48. 

На этом простейшем примере видна трудо-
емкость символьного решения для определите-

ля матрицы, представляющей сумму двух мат-
риц. Однако матрицы соответствующие систе-
мам уравнений реальных цепей и сетей обла-
дают высокой разреженностью. Типичным яв-
ляется случай, когда матрица C является ква-
зидиагональной, как показано на рис. 1, а под-
матрица, лежащая на пересечении ее блоков, 
имеет небольшой порядок (n=2,3,4,5). 

 
Рис. 1. Бисекция матрицы 

В этом практически важном случае теорема 
Сигорского в форме (9) представляет весьма 
эффективный метод раскрытия определителей 
блочно-диагональных матриц высокого порядка 
и символьного анализа электрических цепей, 
имеющих, как правило, каскадную структуру. Вы-
числительное преимущество формулы (9) по 
сравнению с формулой (7) заключается в том, 
что формула (9) позволяет учитывать разрежен-
ность матриц A и B, что проявляется в исключе-
нии из рассмотрения нулевых миноров. При этом 
ненулевых миноров будет значительно меньше 
предельного числа ДВ, рассчитываемого по фор-
муле (8), и окажется проще не подбирать двоич-
ное дополнение (которого может не быть), а вы-
полнять декартово перемножение инвариантов. 

Вторым важным преимуществом формулы 
(9) является удобство ее обобщения для топо-
логического анализа электрических цепей, при 
котором несущественна нумерация узлов схе-
мы, а величина определителя несет информа-
цию об устойчивости. Специалистам, незнако-
мым с формулой (7), приходится ценой трудо-
емких выкладок получать ее частные реализа-
ции, подобные (3). Это препятствует выводу 
диакоптических формул бисекции схемы по че-
тырем и пяти узлам [15,16]. Вместе с тем в за-
дачах формирования символьных схемных 
функций сложных интегральных схем необхо-
дим общий алгоритм построения диакоптиче-
ских формул для произвольного числа узлов 
бисекции. Избежать рутинных выкладок и полу-
чить общее решение позволяет теорема Сигор-
ского в форме двоичных векторов. 

3. Минор схемы (подсхемы) 

Пусть матрица на рис. 1 соответствует схе-
ме, подлежащей бисекции. Заштрихованные 
части матриц A и B, отображающие подсхемы, 
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содержат параметры элементов этих подсхем. 
Заштрихованная дважды часть матрицы A+B, 
отображающей объединенную схему, находится 
на пересечении строк и столбцов, соответст-
вующих общим узлам подсхем. 

Базисный узел схемы без потери общности 
считается принадлежащим обеим подсхемам. 
Сопоставление формул (7), (9) и рис. 1 показы-
вает, что при нахождении определителя матри-
цы схемы достаточно учитывать миноры, соот-
ветствующие общим узлам подсхем, поскольку 
остальные миноры равны нулю. Это обусловле-
но наличием строк и столбцов в матрицах A+B, 
которые состоят из элементов, равных нулю (не-
заштрихованные части этих матриц на рис. 1). 

Операция удаления строки и столбца в мат-
рице эквивалентна операции подсоединения 
норатора и нуллатора к соответствующим уз-
лам схемы. Это позволяет выполнить бисекцию 
на схемном уровне и свести раскрытие миноров 
определителей матриц к разложению опреде-
лителей нораторно-нуллаторных схем. 

Нуллор – аномальный схемный элемент, эк-
вивалентный идеальному операционному уси-
лителю, с управляющей ветвью – нуллатором и 
управляемой ветвью – норатором. Нуллорное 
представление Теллегена [19], обобщенное 
Брауном [20] и автором [21,22], оказалось чрез-
вычайно удобным, обеспечивая взаимосвязь 
между операциями над матрицами и преобра-
зованиями схемы. Ориентированный взвешен-
ный нуллор, получивший название неудаляемо-
го управляемого источника [22], позволил при-
менить для исследования нуллорных схем то-
пологические методы и исследовать устойчи-
вость по знаку схемного определителя [12]. 

Удаление строк и столбцов матрицы соот-
ветствует обычному нуллорному представле-
нию, при котором утрачена информация о парах 
нораторов и нуллаторов в нуллорах, то есть 
любые два норатора и любые два нуллатора 
могут чередоваться, таким образом, при исполь-
зовании обычного нуллора утрачивается инфор-
мация о знаке определителя, хотя это не мешает 
применить матричный метод, для которого су-
щественна нумерация узлов схемы [15,16]. 

При использовании нуллоров для анализа 
схем по частям в понятие ДВ подсхемы вклады-
вается новое содержание. Единицы в первой 
(второй) половине элементов ДВ соответствуют 
конечным узлам подключения нораторов (нул-
латоров). Базисный узел, который не отражает-
ся в ДВ, является начальным узлом всех без 
исключения нораторов и нуллаторов. 

Для схемной интерпретации диакоптических 
формул по аналогии с минором определителя 

матрицы подсхемы можно ввести понятие «ми-
нор определителя подсхемы» или просто «минор 
подсхемы». Использование термина «минор 
подсхемы» более предпочтительно, поскольку 
этот термин отражает связь топологического ме-
тода с матричным методом в отличие от более 
общего понятия «параметр подсхемы». 

Для обозначения миноров схемы или под-
схемы может применяться символика, принятая 
для обозначения миноров матрицы [1]. Нетруд-
но перейти от обозначений миноров подсхемы с 
десятичными индексами к ДВ и обратно. Важно, 
что множество ДВ является унифицированным 
отображением миноров подсхем с одним и тем 
же числом узлов. С учетом изложенного выше 
минор подсхемы, заданный некоторым ДВ, ра-
вен определителю схемы, которая получена из 
этой подсхемы в результате подсоединения 
нуллоров согласно ее ДВ. 

Определитель матрицы узловых проводи-
мостей схемы получается через миноры матриц 
подсхем (левая подсхема описывается матри-
цей проводимости A, а правая – матрицей про-
водимости B). Соединение идеальным провод-
ником базисного узла с некоторым другим уз-
лом, например узлом 1, влечет удаление в мат-
рице 1-й строки и 1-го столбца. Подключение к 
некоторому узлу, например узлу 2, норатора 
(нуллатора) приводит к удалению 2-й строки (2-
го столбца). 

Нуллоры должны быть пронумерованы в со-
ответствии с их очередностью в ДВ, а именно, i-
я по порядку единица в первой (второй) поло-
вине ДВ соответствует норатору i (нуллатору i) 
i-го нуллора. Все шесть миноров подсхемы с 
тремя внешними узлами (n=2, l=6) использованы 
в формуле для бисекции схемы по трем узлам. 

Миноры схемы (схемные миноры), как и ми-
норы матрицы, удобно задавать ДВ размерно-
сти 2n, где n – число общих узлов подсхем, не 
считая базисного узла. Первая (вторая) полови-
на ДВ, содержащая n элементов, соответствует 
строкам (столбцам) матрицы подсхемы A или B 
в заштрихованной дважды части матрицы схе-
мы A+B (см. рис. 1). Причем удаление строки 
или столбца отмечается в ДВ единицей. Если 
данные строка или столбец сохраняются в мат-
рице подсхемы, то это отображается в соответ-
ствующей позиции ДВ нулем. Положение или 
позиции элементов в каждой из половин ДВ за-
дается упорядоченным множеством внешних 
узлов подсхемы, исключая базисный узел. Обо-
значениями позиций ДВ схемы служат обозна-
чения ее узлов. 
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В случае деления схемы по трем узлам 
схемная интерпретация формулы (9) имеет вид 

(12) 
где одинарной стрелкой обозначается ориенти-
рованный норатор, а сдвоенной – ориентиро-
ванный нуллатор. Идеальные проводники экви-
валентны параллельному соединению однона-
правленных норатора и нуллатора. 

Двоичное отображение слагаемых формулы 
(12) совпадает с отображением, использованным 
в формуле (11), соответствующим бисекции мат-
рицы второго порядка (10). Таким образом, сла-
гаемые этой формулы представлены шестью 
парами ДВ. Векторы каждой пары взаимно до-
полняют друг друга (как минор и соответствую-
щий минор), отображая сомножители диакопти-
ческой формулы. Упорядоченное множество об-
щих (или внешних) узлов подсхем, являющееся 
обозначением позиций ДВ, имеет вид: 1212. 

Все миноры подсхемы образуют ее инвари-
ант, позволяющий включить эту подсхему как 
составную часть – «кирпичик» в любую другую 
подсхему или схему. При этом неважно, как вы-
ражены миноры – символьными выражениями 
или числами. То или иное задание обусловлено 
желаемым видом анализа: численным, сим-
вольным или численно-символьным. 

4.Топологическое правило нахождения знака 

Для нахождения знака слагаемых формулы 
(12) и ее обобщений может быть использовано, 
как в формулах (7) и (9), алгебраическое прави-
ло, предусматривающее порядковую нумера-
цию общих узлов подсхем. Однако схема в от-
личие от матрицы является топологическим 
объектом, в котором номера или буквенные 
обозначения узлов должны служить лишь для 
указания соединений элементов. Топологиче-
ское правило нахождения знака не требует 
сложения номеров узлов и их перенумерации. 

В первую очередь следует объяснить, поче-
му слагаемые формулы (7) при n>1 имеют как 
положительные, так и отрицательные знаки. 
Дело в том, что результатом удаления строк и 
столбцов в матрицах A и B, а также последую-
щего сложения этих матриц (рис. 1), может быть 
матрица A+B, не являющаяся квазидиагональ-
ной матрицей. Для того чтобы представить оп-

ределитель матрицы A+B в виде произведения 
двух сомножителей, каждый из которых содер-
жит элементы только одной из матриц, необхо-
димо выполнить перестановку некоторых строк 
и столбцов. 

Нетрудно убедиться, что число перестано-
вок строк и столбцов, требуемое для такого 
преобразования матрицы С после удаления i-й 
строки и j-го столбца в матрице A или B, нахо-
дится по формулам соответственно p'=n–i и 
p''=n–j. Отсюда следует, что сумма i+j оказывает 
на знак соответствующего слагаемого формулы 
(5) такое же влияние как сумма p'+p'', поскольку 
число 2n всегда четное. Преобразования мат-
рицы A (согласно ДВ) или B (согласно дополне-
нию ДВ) требуют суммирования p'+p'' для каждой 
пары номеров строк и столбцов. В силу одинако-
вой четности номеров строк и столбцов взаимно 
дополнительных миноров [1] количества пере-
становок в одной из матриц A или B достаточно 
для приведения матрицы A+B к квазидиагональ-
ному виду. Это доказывает алгебраическое пра-
вило нахождения знака, которое используется в 
формуле (5). Очевидно, именно так рассуждали 
авторы, претендующие на результат (5), лежа-
щий в основе «теоремы Лапласа». 

С другой стороны, знак слагаемого при 
классическом разложении определителя мат-
рицы обусловлен четностью числа инверсий в 
подстановке, образованной номерами строк и 
столбцов, на пересечении которых находятся 
выбранные элементы [1]. Следует подчеркнуть, 
что четность числа инверсий соответствует 
четности числа перестановок строк и столбцов, 
необходимого для приведения матрицы этого 
слагаемого, которая содержит только выбран-
ные элементы, к диагональной форме. 

Таким образом, вместо установления четно-
сти числа перестановок строк и столбцов в мат-
рице A+B, полученной путем удаления строк и 
столбцов в матрицах A и B, достаточно устано-
вить четность числа инверсий в подстановке, 
первая (вторая) строка которой образована но-
мерами удаленных строк (столбцов). Условимся 
считать, что формирование подстановки начи-
нается с номеров строк и столбцов, соответст-
вующих матрице B второй подсхемы. Доказан-
ное топологическое правило нахождения знака 
не требует использования алгебраических опе-
раций, поскольку знак подстановки не зависит 
от порядка следования ее элементов – сущест-
венно только их взаимное положение. 

Эти рассуждения обобщают известное пра-
вило нахождения знака слагаемых определите-
ля матрицы по ее графу [ ]. В этом случае рас-
сматриваются не две матрицы, а одна, напри-
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мер A. «Прием диагонализации» позволяет об-
наружить связь теоремы Сигорского с классиче-
ским результатом Лейбница, положившим на-
чало теории определителей и уже упоминав-
шимся в пояснениях к формуле (9). Знак сла-
гаемого определителя матрицы можно связать 
с четностью-нечетностью числа перестановок 
строк и столбцов, необходимых для расположе-
ния выбранных элементов в виде главной диа-
гонали. Например, если выбраны элементы a21 
и a12, расположенные на побочной диагонали 
матрицы второго порядка, то требуется одна 
перестановка строк или столбцов, чтобы помес-
тить эти элементы на главную диагональ, то есть 
слагаемое a21a12 имеет отрицательный знак. 

5. Топологическая формула бисекции 

Схемно-алгебраическая диакоптическая фор-
мула (12) содержит шесть слагаемых, сомножи-
телями в них являются определители матриц 
проводимостей, которые образованы из матриц 
проводимостей подсхем путем удаления строк и 
столбцов, относящихся к общим узлам этих 
подсхем. Использование матричного метода 
обусловливает (за счет повторного учета оди-
наковых параметров в различных ячейках мат-
рицы) появление в выражении определителя 
взаимно уничтожающихся слагаемых – дубли-
каций, что, в частности, затрудняет формирова-
ние упрощенных выражений ССФ [23]. 

В отличие от формул (7) и (9) все сомножи-
тели в формуле (12) являются определителями 
схем, а не матриц. Подобно определителям ми-
норы схемы и матрицы эквивалентны. Однако 
выражения определителя и миноров матрицы 
схемы, представленные в развернутом виде, 
избыточны [13]. Применение схемно-
топологического метода выделения параметров 
[22] позволяет не только избежать построения 
матриц, но и исключить появление взаимно 
уничтожающихся слагаемых в выражениях оп-
ределителя и миноров подсхемы, являющихся 
сомножителями диакоптических формул. В 
обобщениях формулы (12) также возможно об-
разование дубликаций только на уровне сла-
гаемых, но не внутри сомножителей. 

Нахождение числа инверсий σi в подстанов-
ке и  вычисление знака i-го слагаемого как (–1)σi 
было предложено [12] заменить разложением 
определителя нуллорной схемы, которая обра-
зована в результате объединения нораторов и 
нуллаторов, соответствующих ДВ сомножите-
лей этого слагаемого. Для образования нуллор-
ной схемы нумерация нуллоров, соответствую-
щих первой подсхеме, должна продолжать ну-
мерацию нуллоров второй подсхемы так, что 

норатор i и нуллатор i нуллора с номером i за-
нимают i-ю пару из незаполненных очередных 
позиций в подстановке, образованной норато-
рами и нуллаторами. Такое требование вытека-
ет из определения минора подсхемы, для полу-
чения которого используется порядковая нуме-
рация подсоединяемых нуллоров. 

Имеет место изоморфное соответствие ме-
жду номерами строк (столбцов) и узлами под-
соединения нораторов (нуллаторов) в нуллор-
ной схеме. Как следствие, число инверсий в 
подстановке, образованной из номеров узлов, 
равно числу инверсий в подстановке из номе-
ров нораторов и нуллаторов. Это доказывает 
топологическое правило, согласно которому оп-
ределитель нуллорной схемы, равный 1 или –1 
в зависимости от четности или нечетности чис-
ла инверсий в подстановке, будет соответство-
вать положительному или отрицательному сла-
гаемому в формуле (9). 

Используя понятие минора подсхемы, схем-
ный определитель можно найти по топологиче-
ской формуле, обобщающей формулу (12) 

 ∆ = δ ∆ ∆∑ 1( ) 2( )i i id d  (13) 

где δi – определитель нуллорной схемы, кото-
рая образована в результате объединения нул-
лоров, соответствующих ДВ di и его дополне-
нию id ; ∆1( )id – минор первой подсхемы, соот-

ветствующий di ; ∆2( )id  – минор второй под-

схемы, соответствующий id . 
Например, нуллорная схема, соответствую-

щая первому отрицательному слагаемому в вы-
ражении (12) имеет вид двух подключенных к 
одному узлу и параллельных соединений раз-
ноименных норатора и нуллатора. Чтобы нул-
лорная схема преобразовалась в узел, требует-
ся одна взаимная замена номеров у нораторов 
(или у нуллаторов), то есть определитель нул-
лорной схемы и знак соответствующего слагае-
мого в формуле (12) равны –1. 

На основе отображения произвольной квад-
ратной матрицы y-схемой с источниками тока, 
управляемыми напряжением [25–27] в [28] было 
установлено, что «схемные миноры», исполь-
зуемые в диакоптических выражениях (12) и 
(13), соответствуют не минорам, а алгебраиче-
ским дополнениям матрицы. Корректность ме-
тода двоичных векторов (схемных миноров) при 
замене миноров на алгебраические дополнения 
не нарушается, поскольку сомножители (пере-
множаемые алгебраические дополнения) имеют 
одинаковый знак и не влияют на знак соответ-
ствующего слагаемого в формуле бисекции. 
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Метод двоичных векторов (схемных мино-
ров  или схемно-алгебраических дополнений) 
реализован автором в программе cirsymw, кото-
рая используется в качестве символьного блока 
системы анализа, диагностики и структурного 
синтеза SCADS, обеспечивает символьное мо-
делирование линейных схем в десятки–сотни 
узлов и элементов, включающих все типы 
управляемых источников. Отображение матриц 
произвольной физической природы y-схемами 
позволят использовать программу cirsymw для 
символьного решения различных задач матрич-
ной алгебры. 

Выводы 

1. Теорема Сигорского (7) является не только 
эффективным инструментом символьно-числен-
ного моделирования электронных схем, описы-
ваемых матрицами, но и математической основой 
для многих важных результатов в теории элек-
трических цепей, в том числе доказательства ме-
тодов схемно-алгебраической диакоптики, не 
требующей использования матричного аппарата. 

2. Теорема (7) об определителе суммы мат-
риц гармонично дополняет теорему Бине-Коши 
об определителе произведения матриц. Теорема 
Сигорского формирует системное мышление, 
удобна для численно-аналитического решения 
сложных задач матричной алгебры по частям. 
Представляется оправданным включение тео-
ремы (7) в учебные курсы по линейной алгебре. 
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