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Лазерный экспресс-метод диагностики водных и воздушных сред 

Прохождение лазерного излучение через 
исследуемую среду обеспечивает возмож-
ность получить дифракционную картину, об-
работка которой позволяет оценить размер и 
количество неоднородностей в объеме из-
меряемой среды. Малогабаритный оптикоме-
ханический модуль, установленный в изме-
рительном канале водной или воздушной 
среды, оценивает ее пространственные ха-
рактеристики в реальном масштабе времени 
и предоставляет возможность определить 
количество в удельном обьеме и размер из-
меряемых образований, частиц. 

Passing a laser radiation through the inves-
tigated environment provided the possibility to 
get a diffraction picture, which treatment allows 
to estimate a size and amount of heterogeneities 
in the volume of measurand environment. Small 
optical mechanical module, set in the measuring 
channel of aquatic or air environment, estimates 
its real-time spatial characteristics and gives 
possibility to define an amount and size of 
measurand formations and particles in a specific 
volume. 

Введение 

Измерители малых частиц, находящихся в 
водных или воздушных средах, основанные на 
дифракции лазерного излучения уже применя-
ются в лабораторных условиях. Проводятся из-
мерения диаметра частиц с размерами от 0,02 
до 200 мкм и точностью не хуже 20 % на аппа-
ратах фирмы «Malvern». Количественная со-
ставляющая частиц в объеме – колеблется и в 
зависимости от условий измерения, в частности 
точности указания показателей преломления 
среды, в которой производятся измерения, со-
ставляет порядка 30 %.[1]. Современное лазер-
ное гранулометрическое оборудование изготови-
теля лабораторного оборудования «FRITSCH» 
позволяет нам проводить измерения разных 
материалов, например определения диаметра 
частиц, порошков, эмульсий и аэрозолей с раз-
мерами до 1160 мкм. Нижняя граница у таких 
приборов на уровне 0,02 мкм [2]. Однако боль-
шие габариты прибора - длина не менее 1,2 м, 
не малая стоимость приборов не позволяет их 
использовать в качестве датчиков, определяю-
щих количества и размер, частиц в водных и га-

зообразных растворах, применять их в системах 
контроля, например, за качеством воды, эколо-
гией в цехах порошковой металлургии и пред-
приятий пищевой промышленности.  

Основная часть 

Метод, основанный на дифракции лазерного 
излучения позволяет контролировать флуктуа-
ции диэлектрической проницаемости среды, ис-
пользуя разностные методы анализа изображе-
ния. Для получения данных о размерных спек-
трах, концентрации, удельной площади поверх-
ности частиц дисперсной фазы (взвеси, суспен-
зии, пыль, эмульсии или аэрозоли), а также 
размерных спектров и концентрации супранад-
молекулярных комплексах воды (СНМ комплек-
сы - гигантских гетерофазных кластерах) ис-
пользуется решение обратной задачи построе-
ния размерных спектров на основе индикатрисы 
рассеяния. Для этого использован алгоритм 
расчета объемной функции распределения (W), 
при допущении о кусочно-постоянном характере 
W задача сводится к решению системы линей-
ных уравнений: E = A·W, где E – вектор сигнала 
измерителя, А – матрица коэффициентов, W – 
вектор дискретной функции W. Поскольку зада-
ча восстановления W по известной индикатрисе 
рассеяния является некорректной, то соответ-
ствующая система линейных уравнений сильно 
вырождена. Для получения "хорошей" оценки W 
требуется тщательный выбор параметров ря-
дов наблюдения и размерности матрицы А. Од-
нако ограничение размерности А приводит к 
достаточно грубой оценке W и для построения 
приборов с высоким разрешением требуется 
применение методов регуляризации. 

Перед измерением объекта производится 
определение фонового сигнала, а затем сигнал 
при налички, измеряемой рассеивающей среды. 
Преобразованные в матричную форму изобра-
жения вычитаются друг из друга. Это изображе-
ние делится на 100 равных фрагментов в пре-
делах углов наблюдения 0,0034…0,156 рад. За-
тем элементы матрицы каждого из фрагментов 
суммировались и из них формировался вектор 
сигнала измерителя Е. Элементы матрицы ко-
эффициентов А рассчитывались по специально 
разработанным формулам [2]. При проведении 
операции сглаживания вида получено решение 
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для объемной концентрации W(d), где d – диа-
метр частиц для 480 размерных групп. Разра-
ботка дифракционного анализатора дисперсно-
сти высокого разрешения (не менее 200) в диа-
пазоне 1...100 мкм. Но для построения таких 
приборов требуется и получение вектора E со-
ответствующей размерности [3]. В аналогичных 
приборах фирм "Malvern" и "Fritsch" использу-
ются специализированные многоэлементные 
фотоприемники. Ввиду отсутствия таких много-
элементных фотоприемников рассматривались 
два варианта - применение фотодиодных лине-
ек фирмы "ТАOS" и Web-камеры. Применение 
фотодиодных линеек такого типа для анализа 
дифракционной картины затруднительно в силу 
малых размеров элемента фотоприемника, по-
этому в качестве основного варианта использо-
вали Web–камеру [4]. 

Изменения дифракционной картины, кото-
рые и регистрируются через определенные ин-
тервалы времени, представляли в виде матри-
цы дискретных элементов со значением интен-
сивности сигнала. Результаты наших исследо-
ваний легли в основу разработки метода экс-
пресс-определения подлинности питьевых вод 
[5], и позволили разработать аппараты для его 
использования в практике. Лазерная дифрак-
ция, обладая рядом преимуществ перед “клас-
сическими” методами измерения, например, пе-
ред анализом изображения с помощью микро-
скопа – обеспечивает быстрое получение ре-

зультатов при сохранении точности в широком 
диапазоне измерений. 

В настоящем сообщении показаны возмож-
ности малогабаритного оптического измерителя 
для регистрации количества частиц с размера-
ми от 1 до 500 мкм в удельном объеме изме-
ряемой среды, с одновременным измерением 
их диаметра. Непосредственно модуль регист-
рации состоит из лазерного источника излуче-
ния со стабилизацией его мощности и длины 
волны излучения, оптической формирующей 
системы, устройством контроля лазерного из-
лучения до и после измеряемой среды, а также 
камерой для регистрации изображения на высо-
коотражающем экране. Комплект измерителя 
ИДЛ-1, состоящий оптикомеханического модуля 
и ПК приведен на рис. 1. 

Математическая обработка изображения, 
образуемого прошедшим когерентным излуче-
нием через исследуемую среду и регистрируе-
мая Web камерой и обеспечивает результат за 
время не более 3 минут. Размеры оптикомеха-
нического модуля не превышают 300 на 90 и на 
100мм при весе с электроникой – не более 1,5кг 

Точность измерителя контролировалась по-
средством использования калиброванных час-
тиц, латексов, лейкоподиумов, а также твердо-
тельного образца-эталона, с расположенными 
внутри (искусственно нанесенными) неоднород-
ностями, приводящими к изменению волнового 
фронта, прошедшего лазерного излучения. 

 

Рис. 1. Измеритель дифракционный лазерный «ИДЛ-1» 
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График измерения диаметра и количества час-
тиц в течение не менее 20 часов указывает на 
достаточно высокую стабильность результатов 
измерений, так относительная погрешность при 
регистрации количества и размера частиц, рас-
положенных внутри специального образца со-
ставила не более 20 % (см. рис. 2). 

В настоящее время проводятся работы по 
использованию измерителя, работающего без 
оператора на стационарных постах, автомати-
зированных лабораторных комплексах (с пере-
дачей данных в формате MODBAS). Первая се-
рия приборов, получившая название Измери-
тель дифракционный лазерный «ИДЛ-1» проста 
в эксплуатации и требует только установки в 
зоне измерения или подачи измеряемой среды 
(воздушной или водной) в прокачиваемый канал 
регистрации. 

ИДЛ-1 малогабаритное устройство, способ-
ное работать в нескольких перенастраиваемых 
режимах (измеритель дисперсных характери-
стик взвесей и суспензий, счетчик аэрозолей, 
лазерный интерферометр). Кюветодержатели 
лабораторные, например, 10 мм, используемые 
при фотоколориметрии, прокачные (как показа-
но на фото), специальные термостатируемые. В 
результате обработки получаем следующие

 интегральные и дифференциальные характе-
ристики дисперсности: концентрация частиц 
дисперсной фазы (частиц/мл), концентрация 
частиц дисперсной фазы, объемные %; ослаб-
ление интенсивности лазерного света вследст-
вие рассеяния; удельная площадь поверхности 
частиц дисперсной фазы т.е. суммарная пло-
щадь частиц (см2) на суммарный объем (см3); 
численный и объемный размерный спектр час-
тиц дисперсной фазы, интервал размеров в 
диапазоне 1…500 мкм, 483 размерные группы 
(для сравнения – у фирмы “Malvern” – фиксиро-
ванный интервал размеров, 32 размерные груп-
пы); индикатрису рассеяния. 

Использования элементов термостабилиза-
ции зоны измерений, например, кюветы с ис-
следуемым водным раствором, обеспечивает 
измерение параметров при изменении темпера-
туры в диапазоне от - 5 до + 60 градусов с точ-
ностью поддержания температуры не менее 1 
градуса. Результаты измерений структуры вод-
ных растворов солей хлоридов натрия и калия, 
приведены на рис. 4. 

На графике отчетливо видно количественное 
уменьшение структурных образований при повы-
шении температуры растворов до 45 градусов.  
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Рис. 2. Измерение диаметра частиц – 1 и их расчетной концентрации в обьеме в образце – 2, 

расположенных непосредственно внутри на протяжении 20 часов работы измерительного прибора 
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Рис. 3. Изменение структуры раствора солей в зависимости от температуры 
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Рис. 4. Изменение структуры легкой воды при нагревании 
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Программная обработка обеспечивает 
непосредственный контроль за результатами 
измерений, а также его отображение в виде 
гистограммы или графика с указанием основных 
параметров измеряемой среды. На рис. 5 при-
ведена гистограмма измерения частиц лейкопо-
диума с размерами от 20 до 40 мкм, растворен-
ных в дистилированной воде. 

На гистограмме отчетливо видно относи-
тельное распределение частиц по их размерам. 
Анализ приведенных результатов указывает на 
их воспроизводимость с погрешностью не более 
20 % для постоянных частиц в водной среде.  

С целью определения возможности измере-
ний в воздушной проточной среде, нами создан 
макет на основе ИДЛ-1 , где измерение осуще-
ствлялось во время прокачки воздуха с части-
цами размолотых зерен сои. Воздушный поток 
от компрессора захватывал частицы сои и про-
гонял их через оптический канал измерителя, 
изменение дифракционной картины регистри-
ровалось, последующая обработка - позволила 

оценить средний размер помола. Предвари-
тельные измерения на оптическом микроскопе – 
указали на наличие частиц с размерами от 3 до 
20 мкм, однако их распределение в количест-
венном составе определить было сложно. С 
помощью измерителя определено, что порядка 
24 % в объеме прокачиваемого воздуха, зани-
мают частицы с размерами 7,0 мкм. Следует 
отметить, что использование специальной кю-
веты исключает возможности налипания частиц 
сои на окна измерительной кюветы. 

 Первое промышленное испытание прове-
дено в цеху порошковой металлургии. Непос-
редственно воздушная среда и прокачивалась 
микрокомпрессором через специальную кювету 
измерителя ИДЛ-1. Фрагмент результата суточ-
ного измерения среднего количества, частиц с 
размерами порядка 12 мкм в обьеме 1 см куб, 
приведен на рис. 6. 

Отчетливо виден рост количества на поря-
док связанный с выбросом порошка в ходе тех-
нологического процесса. 
 

 
Рис. 5. Гистограмма измерения частиц лейкоподиума растворенных в дистилированной воде 

 
Рис. 6. Относительное количество частиц порошка размером 12 мкм в помещении цеха в зависимости 

от времени 
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На протяжении шести суток регистрирова-
лось наличие частиц в атмосфере воздуха, часть 
которого прокачивалась через измерительную 
кювету. Работоспособность изделия продолжа-
лась при достаточно жестких условиях эксплуа-
тации, так температура воздуха в зоне оптикоме-
ханического датчика ИДЛ-1 поднималась до 40 
градусов. Применение сегодня системы переда-
чи данных на расстояние обеспечит установку 
только датчика измерительного прибора в «горя-
чей» точке измерения.  

Выводы 

Полученные результаты при использовании 
аппарата серии ИДЛ-1 уже сегодня обеспечи-
вают его внедрение в технологические процес-
сы. Контроль размера и количества малых час-
тиц в жидких средах позволил проводить их 
сравнение и идентификацию[6]. Передача ин-
формации в реальном масштабе времени по-
зволит оценивать своевременное изменение 
цикла химической очистки воды, профилактики 
мукомольного оборудования, проведения до-
полнительных мер по ликвидации каналов утеч-
ки продукта при порошковой технологии, обес-
печит контроль за окружающей средой. 
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