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Повышение помехоустойчивости метода сдвига среднего  
при сегментации цветных изображений 

Разработан модифицированный метод 
сдвига среднего сегментации цветных изоб-
ражений. Он основан на многоэтапном уточ-
нении центров кластеров признакового про-
странства с помощью адаптивного выбора 
ширины парзеновского окна при непарамет-
рическом оценивании. Это позволило сег-
ментировать цветные изображения с высо-
кой помехоустойчивостью. 

The modified mean shift method of color im-
age segmentation is elaborated. It based on the 
many-stage more precise definition of the clus-
ter centers in the feature space with the help of 
the adapted choice of the Parsen window for 
nonparametric estimation. This is allow to seg-
ment color images with high noise stability. 

Ключевые слова: метод сдвига среднего, 
сегментация цветных изображений, изображе-
ние гистологического препарата, помехоустой-
чивость сегментации, качество сегментации. 

Введение 

Сегментация цветных изображений – одна из 
процедур систем искусственного интеллекта и 
распознавания образов в медицине, видеонаб-
людении, стереозрении, робототехнике, а также 
при передаче данных по сети Интернет. Под 
сегментацией подразумевается разбиение изо-
бражения на области, однородные по какому-
либо признаку: интенсивности, текстуре, цвету. 
Использование цвета при сегментации изображе-
ний обусловлено тем, что цвет облегчает выде-
ление и распознавание объектов на изображении. 

Обработка цветных изображений выполня-
ется в натуральных цветах и псевдоцветах [1]. 
При использовании натуральных цветов изо-
бражения формируются цветными устройства-
ми регистрации изображений: телекамерой или 
сканером. В случае обработки изображений в 
псевдоцветах диапазонам значений интенсив-
ности монохромного сигнала присваиваются 
значения цветов. В настоящее время все шире 
используется обработка изображений в нату-
ральных цветах по сравнению с обработкой в 
псевдоцветах, т. к. средства регистрации и ап-

паратной обработки таких изображений стали 
доступнее. 

Сегментация цветного изображения обеспе-
чивает инвариантность к трансформациям его 
интенсивности и снижение объема обрабаты-
ваемой информации. В качестве основных под-
ходов к сегментации цветных изображений в 
данной работе выделены подход, использующий 
пространственную информацию о расположении 
пикселей, и подход, учитывающий статистиче-
ские характеристики цветовых компонент изо-
бражения. Методы, реализующие первый подход 
(наращивание областей, слияния-расщепления, 
водоразделов), обладают высокой помехоустой-
чивостью, однако на неравномерно освещенных 
изображениях и смазанных перепадах цвета вы-
деляют ложные границы сегментов [1]. Методы, 
реализующие второй подход лишены этого не-
достатка, но обладают низкой помехоустойчиво-
стью вследствие того, что при сегментации не 
учитывается пространственное расположение 
пикселей изображения [2]. Задача повышения 
помехоустойчивости одного из этих методов, ме-
тода сдвига среднего на основе непараметриче-
ской классификации пикселей изображения, ре-
шается в данной работе.  

Постановка задачи 

В результате формирования цветного изо-
бражения каждому его пикселю соответствует 
вектор значений цветовых признаков. Совокуп-
ность векторов признаков пикселей изображе-
ния формирует признаковое пространство с 
произвольной структурой. 

Признаковые пространства произвольной 
структуры могут быть проанализированы непа-
раметрическими методами, так как эти методы 
не требуют предварительных предположений о 
количестве кластеров на изображении. Методы 
непараметрической классификации разделяются 
на две группы: иерархическая классификация и 
оценка плотности вероятности. Иерархическая 
классификация объединяет или разделяет дан-
ные на основании некоторой меры сходства. Од-
нако такие методы требуют большого количества 
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вычислений. Другая проблема заключается в 
том, что определение критерия останова для 
объединения или разделения данных не всегда 
очевидно [3]. 

Непараметрическая классификация на осно-
вании оценки плотности вероятности предпола-
гает, что признаковое пространство характери-
зуется функцией эмпирической плотности веро-
ятности некоторого параметра. Плотные скопле-
ния точек в признаковом пространстве соответ-
ствуют локальным максимумам (модам) функции 
плотности вероятности. Если определено распо-
ложение моды, можно выделить ассоциирован-
ный с ней кластер на основе локальной структу-
ры пространства признаков [2, 4, 5]. 

Одним из методов сегментации цветных 
изображений, реализующих непараметрическую 
классификацию векторов признаков пикселей, 
является метод сдвига среднего. Согласно это-
му методу производится выделение кластеров в 
пространстве признаков путем смещения окре-
стности вокруг центра кластера. Функция эмпи-
рической плотности вероятностей признаков 
оценивается методом парзеновских окон. Этот 
метод в качестве параметров использует шири-
ну полосы изменения цветовых и пространст-
венных признаков (ширину парзеновского окна), 
а также площадь минимальной обнаруживае-
мой области цветового пространства. Преиму-
щество метода сдвига среднего в том, что об-
ласти с малыми значениями градиента интен-
сивности объединяются в одну область в отли-
чие от других методов сегментации, которые 
формируют ложные границы сегментов для по-
добных областей. Метод сдвига среднего не тре-
бует большого количества вычислений. Для по-
вышения его быстродействия применяются слу-
чайные смещения в области наиболее вероятного 
скопления векторов признакового пространства. 

Недостатки этого метода заключаются в 
том, что значительное количество векторов 
признаков рассеяны по пространству (концен-
трируются в его малых областях). Вследствие 
этого снижается помехоустойчивость метода 
сдвига среднего – не сохраняются границы об-
ластей сложной формы. Для решения этой про-
блемы можно использовать методы снижения 
размерности признакового пространства или 
адаптивно выбирать ширину парзеновского ок-
на в пространственной области и в признаковом 
пространстве на основе локальной структуры 
этих пространств [6]. 

Целью работы является повышение поме-
хоустойчивости метода сдвига среднего путем 
многоэтапного уточнения центров кластеров 
признакового пространства с помощью адап-

тивного выбора ширины парзеновского окна при 
непараметрическом оценивании. 

Для достижения поставленной цели решены 
следующие задачи:  
− разработан модифицированный метод 

сдвига среднего с многоэтапным уточнени-
ем центров кластеров признакового про-
странства с помощью адаптивного выбора 
ширины парзеновского окна при непарамет-
рическом оценивании; 

− проведены экспериментальные исследова-
ния этого метода при сегментации цветных 
изображений; 

− предложенный метод использован для 
сегментации изображений гистологических 
препаратов. 

Цветовая модель изображения 

Цветовая модель описывает цвета изобра-
жения стандартным образом, определяя некото-
рую систему координат и подпространство внут-
ри этой системы, в которой каждый цвет пред-
ставляется единственной точкой [1]. Сущест-
вующие цветовые модели изображений ориен-
тированы на устройства воспроизведения (цвет-
ные принтеры, мониторы) или на прикладные 
задачи, возникающие при работе с графикой 
(создание цветной графики в анимации). Аппа-
ратно-ориентированными цветовыми моделями 
для цветных мониторов является модель RGB, 
для цветных принтеров – модель CMY, и модель 
HSI, соответствующая цветовосприятию челове-
ка. Недостаток этих моделей в том, что соответ-
ствующие цветовые пространства не являются 
перцептивно однородными и не могут использо-
ваться для вычисления цветовых расстояний. 
Поэтому Международной комиссией по освеще-
нию (CIE) было создано пространство Luv [7]. 
Это пространство является колометрическим, т. 
е. одинаково воспринимаемые цвета имеют оди-
наковые цветовые координаты, и равноконтраст-
ным (т. е. равным изменениям координат цвет-
ности соответствуют равные изменения в ощу-
щении цвета). Параметр L соответствует интен-
сивности цвета, параметр u отвечает за переход 
от зеленого к красному цвету (при увеличении), а 
при увеличении параметра v происходит переход 
от синего к фиолетовому цвету. Если u и v равны 
нулю, то, меняя L, получаем цвета, являющиеся 
градациями серого. 

В качестве расстояния между цветами 
( )1 1 1, ,L u v  и ( )2 2 2, ,L u v  используется евклидово 
расстояние: 

 2 2 2
1 2 1 2 1 2( ) ( ) ( )D L L u u v v= − + − + − . (1) 
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При расстоянии между двумя цветами 5D >  
большинство людей уже замечают различие, 
при 10D >  оно заметно всем. Достоинство про-
странства Luv в том, что оно учитывает воспри-
ятие цветов человеком и различие между цве-
тами определяется формулой (1), которая при-
меняется при определенных условиях: освеще-
ние и фон не должны мешать и отвлекать на-
блюдателя. 

В данной работе в качестве признака сегмен-
тации используются значения параметра L про-
странства Luv, т. е. сегментация цветных изо-
бражений методом сдвига среднего проводится 
по одному признаку – интенсивности цвета. В 
процессе реализации этого метода проводится 
оценивание мод эмпирической плотности веро-
ятностей распределения признака сегментации. 

Метод сдвига среднего оценки мод 
эмпирической плотности вероятностей 

Оценка одномерной эмпирической плотно-
сти вероятностей признаков сегментации мето-
дом парзеновских окон определяется формулой 
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где Kc  – константа.  
Чтобы уменьшить объем вычислений, в ка-

честве функции ядра )(xK  используют функ-
цию вида  
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где 0kc >  – константа, нормализующая инте-
грал от ( )K x  к единице; 0h >  – параметр;  
k(⋅) – функция радиально симметричного ядра 
для оценки плотности вероятностей.  

Тогда при аппроксимации эмпирической плот-
ности вероятностей необходимо задавать только 
один параметр – 0h > , а оценка (2) принимает вид: 
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где n – количество элементов одномерного при-
знакового пространства R , участвующих в 
оценке эмпирической плотности вероятностей. 

В работе [8] в качестве функции ( )k x  ис-
пользовались функции  
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Для анализа признакового пространства с 

плотностью вероятностей ( )f x  прежде всего 
нужно найти моды этой плотности. Моды лока-
лизованы в точках, для которых производная 

'( ) 0f x = . Процедура сдвига среднего локализу-
ет нули производной эмпирической плотности 
вероятностей, не оценивая саму функцию плот-
ности вероятностей. Оценка производной плот-
ности вероятностей проводится по формуле: 
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Вводится производная функции ядра 
( ) '( )g x k x= −  и предполагается, что эта произ-

водная существует для любого 0≥x , за ис-
ключением конечного множества точек. Тогда 
формула (3) принимает вид:  
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положительной. 
Второй сомножитель в формуле (4) пред-

ставляет собой сдвиг среднего – разность меж-
ду взвешенным средним, использующим значе-
ния ядра ( )g x  в качестве весовых коэффициен-
тов, и центром ядра (окна) х. 
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В работе [8] показано, что сдвиг среднего, 
вычисленный с ядром ( )g x , пропорционален 
оценке нормализованной производной эмпири-
ческой плотности вероятности, оцениваемой с 
помощью ядра ( )k x . Поэтому сдвиг среднего 
всегда направлен по максимуму возрастания 
эмпирической плотности вероятности.  

Последнее обстоятельство гарантирует 
сходимость этой оценки в точку с нулевой про-
изводной. Области с малыми значениями плот-
ности вероятностей не представляют интереса, 
поэтому сдвиг среднего в таких областях боль-
шой. Возле локальных максимумов сдвиг малый 
и анализ более подробный. Из этого следует, 
что метод сдвига среднего – это метод адап-
тивного спуска по градиенту, итерации которого 
проводятся по формуле 

 

2

1
1 2

1

n
j l

l
l

j
n

j l

l

y x
x g

h
y

y x
g

h

=
+

=

 − 
 
 =

 − 
 
 

∑

∑
 (j = 1,2,…), 

где уj – текущая позиция ядра; lx  – элементы 
выборки; ( )g x  – производная функции ядра для 
оценки плотности вероятностей; у1 – первона-
чальная позиция ядра; 1jy +  – новая позиция 

ядра. 
Известно, что градиентные методы оптими-

зации сходятся только для бесконечно малой 
величины шага [9]. Если шаг выбрать слишком 
большим – градиентная процедура расходится, 
если слишком малым – сходимость очень мед-
ленная. Адаптивная величина сдвига среднего 
избавляет от необходимости использовать про-
цедуру выбора шага и гарантирует сходимость 
[8], что является преимуществом перед обыч-
ными градиентными методами.  

Модифицированный метод сдвига среднего 
сегментации цветных изображений  

Если оценка эмпирической плотности веро-
ятностей методом парзеновских окон использу-
ется для сегментации изображений методом 
сдвига среднего, то в качестве функции ядра 
k(x) рассматривается гистограмма значений ин-
тенсивности изображения. С учетом этого мо-
дификацию метода сдвига среднего сегмента-
ции цветных изображений предлагается осуще-
ствлять в двух направлениях. Во-первых, для 
повышения помехоустойчивости предваритель-
но сглаживать гистограмму значений интенсив-
ности изображения. Во-вторых, выполнять мно-

гоэтапное уточнение центров кластеров призна-
кового пространства с помощью адаптивного 
выбора ширины парзеновского окна при непа-
раметрическом оценивании.  

Одним из подходов к сегментации изобра-
жений, позволяющих достичь поставленной в 
работе цели, является получение пересегмен-
тированного изображения. Пересегментирован-
ное изображение – это изображение, содержа-
щее ложные границы сегментов, т. е. сегменти-
рованное более детально, чем требуется для 
решения прикладной задачи. Далее выполняет-
ся объединение тех областей пересегментиро-
ванного изображения, для которых значения 
признака сегментации отличаются не более, 
чем на заданную пороговую величину. Этот 
подход в данной работе реализуется следую-
щим образом. Сначала находятся оценки мод 
гистограммы методом сдвига среднего с малой 
шириной парзеновского окна, которые характе-
ризуются низкой погрешностью, но и низкой по-
мехоустойчивостью. Полученные оценки мод 
гистограммы позволяют выделить однородные 
области пересегментированного изображения. 
Затем для слияния однородных областей пере-
сегментированного изображения выполняется 
уточнение оценок мод гистограммы значений 
интенсивности цвета в несколько этапов. На 
каждом этапе процедуры уточнения объединя-
ются оценки мод гистограммы с близкими зна-
чениями. Это производится путем увеличения 
ширины парзеновского окна и повторного при-
менения метода сдвига среднего с новым зна-
чением этого параметра. Увеличение ширины 
парзеновского окна в методе парзеновских оце-
нок аппроксимации плотности вероятности при-
водит к возрастанию помехоустойчивости оцен-
ки [10]. 

В результате разработан модифицирован-
ный метод сдвига среднего сегментации цвет-
ных изображений, который определяется сле-
дующими параметрами: 
− линейный размер hs минимальной обнару-

живаемой пространственной области изо-
бражения;  

− максимальная абсолютная разность hr зна-
чений признака сегментации для пикселей 
однородной области изображения; 

− ширина парзеновского окна h для оценива-
ния функции плотности вероятностей при-
знака сегментации (интенсивности цвета);  

− размер скользящего окна, применяемого 
для сглаживания значений признака сегмен-
тации;  

− величина погрешности ε оценивания моды 
гистограммы признака сегментации;  
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− величина порога ε0 для критерия останова 
рекурсивной процедуры уточнения мод гис-
тограммы. 
Этот метод заключается в следующем:  
1. значение интенсивности изображения 

сглаживается центрально-взвешенным усред-
няющим фильтром с весом центрального эле-
мента скользящего окна равным 2;  

2. вычисляется гистограмма значений ком-
поненты интенсивности изображения; 

3. для подготовки к работе метода сдвига 
среднего выбирается множество из m точек гис-
тограммы компоненты интенсивности изобра-
жения; ординаты этих точек представляют ве-
роятности соответствующих значений признака 
сегментации; 

4. из каждой выбранной на предыдущем эта-
пе точки ,1iy  (i = 1,2, …, m) методом сдвига 
среднего проводится итеративный поиск бли-
жайшей к точке ,1iy  моды гистограммы признака 
сегментации; итерации проводятся по формуле  
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где h – ширина парзеновского окна (параметр 
алгоритма); xl (l = 1,2, …, n) – элементы парзе-
новского окна; j – номер итерации; 

5. для останова итеративного процесса (5) 
используется следующий критерий: разность 
результатов двух последовательных итераций 
по формуле (5) не превышает ε – величину по-
грешности оценивания моды гистограммы при-
знака сегментации:  

, 1 , ;i j i jy y+ − ≤ ε  

6. точка оптимума, найденная с помощью 
итеративного процесса (5), принимается в каче-
стве оценки ближайшей к точке ,i jy  моды гисто-

граммы признака сегментации; 
7. полученные на предыдущих этапах оцен-

ки мод гистограммы уточняются с помощью ре-
курсивной процедуры метода сдвига среднего: 
− каждый раз при входе в рекурсивную про-

цедуру уточнения оценки моды гистограммы 
в качестве начальной точки метода сдвига 
среднего выбирается точка оптимума, полу-
ченная на предыдущем этапе рекурсии; 

− выполняются итерации по формуле (5);  
− сохраняется информация о полученных точ-

ках оптимума и траекториях итеративного 
процесса (5);  

− объединяются точки оптимума, лежащие в 
признаковом пространстве менее, чем на hr 
(параметр алгоритма); 

− если выполнялось объединение точек оп-
тимума, лежащих в признаковом простран-
стве менее, чем на hr, ширина h парзенов-
ского окна увеличивается на 2 пикселя и 
осуществляется переход на первый этап 
рекурсивной процедуры метода сдвига 
среднего; 

− для останова рекурсивной процедуры ис-
пользуется следующий критерий: сумма мо-
дулей разностей значений мод гистограм-
мы, полученных при двух последовательных 
запусках рекурсивной процедуры, не пре-
вышает заданную величину ε0; 

− если условие останова рекурсивной проце-
дуры не выполнено, ширина h парзеновско-
го окна увеличивается на 2 пикселя и оче-
редной раз запускается процедура уточне-
ния оценок мод гистограммы; 
8. в случае останова рекурсивной процеду-

ры формируются однородные области изобра-
жения с использованием информации о полу-
ченных точках оптимума и траекториях итера-
тивного процесса (5); 

9. проводится морфологическая обработка 
результата сегментации с учетом параметра hs 
(где hs – линейный размер минимальной обна-
руживаемой пространственной области изобра-
жения): удаление малых областей изображения 
и сглаживание границ оставшихся однородных 
областей. 

Экспериментальные исследования 
модифицированного метода сдвига 
среднего сегментации цветных изображений  

При проведении экспериментальных иссле-
дований предложенного метода сегментации 
изображения оценивалась его помехоустойчи-
вость, качество выделения границ сегментов, а 
также эффективность, определяющая снижение 
объема обрабатываемой информации. При 
оценке помехоустойчивости метода сравнива-
лись идеально и реально сегментированные 
изображения по критерию Прэтта [11]. 

Показателем качества сегментации цветного 
изображения выбран показатель близости между 
границами тестового идеально сегментированно-

го изображения этI  и изображения, сегментиро-
ванного t-м методом обработки It [12]: 
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где M, N – размеры изображения; Р – длина гра-
ниц выделенных сегментов в пикселях. 

Для оценки эффективности сегментации ис-
пользовался показатель из работы [12] 

 0 2

0

log
1

n q
E

k
=

+
, 

где 0n  – количество пикселей в обрабатывае-
мом цветном изображении; q – количество гра-
даций цвета из расчета 3 байта на цвет  
(24 бит); 0k  – количество значимых пикселей ре-
зультата сегментации. 

В результате экспериментальных исследова-
ний получены графики зависимости критерия 
Прэтта, а также показателя качества выделения 
границ областей и эффективности сегментации 
от отношения сигнал/шум по мощности (рис. 1). 
При оценке этих показателей использовалось 
тестовое изображение, которое состояло из двух 
фрагментов. Пиксели одного фрагмента имели 
значения цвета (1, 26, 51), пиксели второго 
фрагмента – значения цвета (205, 230, 255). На 
каждую цветовую компоненту этого изображения 
был наложен белый гауссовский шум с одинако-
вой дисперсией, потому что одинаковыми явля-
ются разницы значений цветовых компонент 
(рис. 2, а). Отношение сигнал/шум по мощности 

определялось как 2 2
вх вх/q h= σ , где вхh  – разница 

значений любой цветовой компоненты.  
Анализируя полученные результаты  

(рис. 2, 3), следует заметить, что по критерию 
Прэтта модифицированный метод сдвига сред-
него сегментации изображений превышает базо-
вый метод в 1,1…3,3 раз при отношении сиг-
нал/шум 1…4 по мощности. При других значени-
ях отношения сигнал/шум для обоих методов по 
критерию Прэтта получены сходные результаты. 
По показателю качества модифицированный ме-
тод сдвига среднего и базовый метод сравнимы 
при отношении сигнал/шум 2,5 и выше по мощ-
ности. При низких отношениях сигнал/шум (1…2 
по мощности) модифицированный метод хуже 
базового до 1,6 раз. Эффективность сегмента-
ции модифицированным методом сдвига сред-
него превышает эффективность сегментации ба-
зовым методом до 3,6 раз при отношении сиг-
нал/шум менее 5 по мощности. Таким образом, 
наибольший выигрыш получен по помехоустой-
чивости при значениях отношения сигнал/шум 1 
и 2 по мощности. Это связано с тем, что при вы-
соком уровне шумов базовый метод сегментации 
неспособен корректно определить моды эмпири-
ческой плотности вероятности распределения 
признака сегментации. 

     
а                                                                                   б 

 
в 

Рис. 1. Зависимость критерия Прэтта R (а), показателя качества (б) и эффективности (в) сегментации от 
отношения сигнал/шум по мощности для базового (1) и модифицированного (2) метода 
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      а         б          в

Рис. 2. Тестовое изображение при отношении сигнал/шум 1 по мощности (а), результаты его сегмента-
ции базовым методом сдвига среднего (б), модифицированным методом (в) 

 
          а           б 

 
в            г 

Рис. 3. Гистограмма тестового изображения при отношении сигнал/шум 5 по мощности (а) и 1 по мощ-
ности (б), результаты сегментации тестового изображения при отношении сигнал/шум 5 по мощности 
базовым методом сдвига среднего (в) и модифицированным методом (г) 

 
Использование модифицированного метода 
сдвига среднего для сегментации 
гистологических изображений 

Модифицированный метод сдвига среднего 
сегментации изображений использовался в сис-
теме анализа гистологических препаратов.  

Основной причиной отсутствия автоматиза-
ции в гистологии является высокая вариабель-
ность и слабая контрастность большинства гис-
тологических структур. Автоматизация анализа 
гистологических структур повышает достовер-
ность диагностики заболевания на ранних ста-

диях, позволяет расширить границы научного 
поиска в медицине. Автоматизированное изме-
рение параметров гистологических объектов 
даёт возможность уточнить лечение и  
управлять терапевтическими процессами. Так, 
наиболее перспективным методом диагностики 
опухолевых заболеваний в настоящее время 
является цитофотометрический анализ специ-
ально приготовленных и окрашенных гистоло-
гических препаратов и их классификация по 
принципу норма–патология. 
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Рис. 4. Гистологическое изображение нейронной ткани 

 
   а          б          в 

Рис. 5. Результаты сегментации изображения с рис. 4: белым цветом на изображении отмечена 
область ядер нейронов (а), нейронной ткани (б), фона (в) 

Одним из главных этапов измерения опти-
ческих и геометрических параметров является 
выделение объектов на гистологических препа-
ратах. Эта задача решается с помощью мето-
дов и средств цифрового анализа изображений. 
Примером обработки гистологического изобра-
жения может послужить сегментация изображе-
ния нейронной ткани (рис. 4). 

С помощью предложенного в данной работе 
метода удалось выделить ядра нейронов  
(рис. 5, а); выделить область, представляющую 
собой нейронную ткань (рис. 5, б) и фон изо-
бражения (рис. 5, в). 

Выводы 

Разработан модифицированный метод 
сдвига среднего с многоэтапным уточнением 
центров кластеров признакового пространства с 
помощью адаптивного выбора ширины парзе-
новского окна при непараметрическом оценива-
нии. Этот метод на тестовом изображении пе-
репада цветов превышает по помехоустойчиво-
сти базовый метод сдвига среднего до 3,3 раз и 
выше, а также по эффективности до 3,6 раз при 
низких отношениях сигнал/шум (менее 5 по 
мощности). При этом наблюдалось ухудшение 
качества сегментациии до 1,6 раз по сравнению 

с базовым методом при отношении сигнал/шум 
1…2 по мощности. Предложенный метод реко-
мендуется применять в задачах сегментации 
цветных изображений, характеризующихся вы-
соким уровнем шумов, например, при сегмента-
ции изображений гистологических препаратов. 
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