
66 Электроника и связь 1’ 2010

УДК 004.4
Ю.В. Бухтіяров, Д.О. Горобченко, М.В. Дідковська, канд. техн. наук

Система автоматичного створення тестів на базі UML-діаграм
варіантів використання

Предложена система автоматизации про-
цесса создания тестов, которая дает воз-
можность уменьшить временные и финан-
совые затраты, необходимые для процесса
тестирования. Результатами работы систе-
мы являются шаблоны тестов, содержащие
входные данные для теста, условия выпол-
нения и ожидаемые результаты. Создание
тестов в автоматическом режиме на базе
анализа UML-диаграмм вариантов использо-
вания позволяет избежать пропуска важных
тестов и неполноты покрытия спецификации.

System for automated tests’ creation, that
allows to reduce the time and costs required for
the testing process, is proposed. The results of
system functionality are tests’ templates that
contain input data, conditions of execution and
expected results. Tests’ creation in automatic
mode based on the analysis of the UML use
case diagrams allows to avoid omission of im-
portant tests and the incomplete cover sheet.

Ключевые слова: тестирование, автомати-
зация тестирования, тестирование по сценарию,
диаграмма вариантов использования, UML.

Вступ

Згідно із сучасними методиками проектування,
процес створення й супроводу інформаційних си-
стем описується у вигляді життєвого циклу, який
представляють як ітеративну послідовність певних
стадій і виконуваних на них процесів [1]. Для кож-
ної стадії визначають склад і послідовність вико-
нуваних робіт, очікувані результати, необхідні ме-
тоди й засоби, ролі та відповідальність учасників
тощо. Такий формальний опис життєвого циклу
інформаційних систем дає можливість спланувати
й організувати процес колективної розробки прое-
кту та забезпечити керування цим процесом.

Найбільш важливим і складним етапом жит-
тєвого циклу програмного забезпечення (ПЗ)
інформаційних систем є фаза аналізу вимог та
створення специфікацій. Згідно з даними корпо-
рації IBM, на цьому етапі в проект вноситься до
56 % помилок, які потім можуть бути виявлені [2].
Забезпечення якості майбутнього програмного
забезпечення слід розпочинати саме на цій фазі.

Методом контролю якості є тестування. В ро-
ботах [3, 4] було проаналізовано підхід до ство-
рення специфікацій із використанням діаграм

UML (Unified Modeling Language – уніфікована
мова моделювання) та запропоновано метод
здійснення тестування якості вимог до ПЗ на ос-
нові вище зазначених діаграм. Проте на сьогодні
всі тести на початкових етапах життєвого циклу
ПЗ створюються вручну, що не виключає можли-
вості неповного покриття специфікації та пропус-
кання важливих тестів через людський фактор.

Отже, метою роботи є розробка системи ав-
томатичного створення тестів для перевірки
специфікацій, яка дозволить зкоротити витрати
та підвищити якість проекту в цілому.

1. Діаграми варіантів використання як
специфікація проекту

Специфікації програмного продукту містять
як функціональні, так і системні вимоги до прое-
кту. Апаратом для моделювання функціональ-
них вимог є UML-діаграми варіантів використан-
ня (ДВВ) [5].

Діаграма варіантів використання є концепту-
альним представленням системи в процесі її
проектування й розробки.

Розробка діаграми варіантів використання
має на меті:
− визначення загальних меж і контексту мо-

дельованої системи на початкових етапах
проектування;

− формулювання загальних вимог до
функціональної поведінки проектуємої сис-
теми;

− розробку концептуальної моделі системи
для її наступної деталізації у формі логічних
і фізичних моделей;

− підготовку вихідної документації для
взаємодії розробників системи з її замовни-
ками та користувачами.
Суть ДВВ полягає ось у чому: проектовану

систему представляють у вигляді множини ак-
торів, що взаємодіють із системою за допомо-
гою так званих варіантів використання. При
цьому актором (actor), або дійовою особою, на-
зивається будь-яка сутність, що взаємодіє із си-
стемою ззовні [5]. Це може бути людина, техніч-
ний пристрій, програма або інша система, що
слугуватиме джерелом впливу на моделюєму
систему так, як визначить розробник.

У свою чергу, варіант використання (use
case) слугує для опису сервісів, які система на-

Информационные системы и технологии 67

дає акторові. Інакше кажучи, кожний варіант ви-
користання визначає деякий набір дій, викону-
ваний системою під час діалогу з актором. При
цьому аспекти внутрішньої реалізації, на даному
етапі проектування, не розглядаються.

Зауважимо, що в найзагальнішому випадку
діаграма варіантів використання є графом спе-
ціального виду, вершинами якого є варіанти ви-
користання, актори та обмеження, а дугами –
взаємозв’язки між цими елементами.

Вочевидь, від якості проектування функціо-
нальних вимог до системи залежатиме і якість
майбутньої системи. Для тестування специфіка-
цій та вимог до програмного забезпечення вико-
ристовують тестові сценарії (test case). Тесто-
вий сценарій – це набір вхідних даних, очікува-
них результатів та умов виконання, призначений
для визначення відповідності між специфікацією
і реалізацією поставленого завдання. При прое-
ктуванні складних систем виникають труднощі
при створенні тестових сценаріїв тестером,
оскільки людський мозок не може осягнути весь
спектр вимог та обмежень, які потрібно протес-
тувати. Оскільки використання UML-діаграм є
стандартом де-факто при розробці програмного
забезпечення, то є можливість створення спеці-
ального програмного забезпечення для автома-
тичного генерування тестових сценаріїв.

Отже, беручи до уваги зростаючу складність
програмного забезпечення і ціну помилки, обу-
мовлену неякісним тестуванням, запропонуємо
підхід до автоматизації створення тестів на базі
UML-діаграм.

2. Процедура автоматизації створення тестів
на основі діаграм варіантів використання

З метою автоматизації створення тестів
проаналізуємо структурні особливості ДВВ. Ос-
новними елементами ДВВ є актори, варіанти
використання, зв'язки та обмеження.
 За означенням тест (або контрольний прик-
лад) [6] – це звіт, що містить:
− вхідні дані тесту – інформацію, яку програ-

ма отримує із зовнішнього джерела, як-то
пристрій, інша програма або людина;

− умови виконання – вимоги для проведення
тесту, наприклад, певний стан бази даних

або конфігурація пристрою;
− очікувані вихідні дані – передбачуваний ре-

зультат роботи коду.
Тести мають бути розроблені для кожної

ДВВ. При цьому варіант використання формує
безпосередньо вхідні дані, актор та обмеження
надають інформацію для створення умов вико-
нання, а очікувані результати є знову ж варіан-
том використання або його запереченням, за-
лежно від обмежень. Обмеження мають бути
проаналізовані за допомогою класів еквівалент-
ності та граничних елементів [6]. Якщо тестові
дані належать до правильного класу еквівален-
тності, то очікуваним результатом є коректне
виконання варіанта використання, якщо ж до
неправильного – то невиконання варіанта вико-
ристання й повідомлення про помилку.

Проілюструємо це на прикладі.
На рис.1 зображено найпростішу ДВВ надси-

лання повідомлення – зареєстрований користувач
має можливість надіслати повідомлення, розмір
якого має не перевищувати 10000 символів.

З ДВВ мають бути згенеровані такі тести:
Тест 1.
Вхідні дані тесту – надіслати повідомлення.
Умови виконання – зареєстрований корис-

тувач; розмір повідомлення <10000 символів.
Очікувані вихідні дані – коректне виконання

«надіслати повідомлення».
Тест 2.
Вхідні дані тесту – надіслати повідомлення.
Умови виконання – зареєстрований корис-

тувач; розмір повідомлення =10000 символів.
Очікувані вихідні дані – невиконання «наді-

слати повідомлення» та повідомлення про по-
милку.

Тест 3.
Вхідні дані тесту – надіслати повідомлення.
Умови виконання – зареєстрований корис-

тувач; розмір повідомлення >10000 символів.
Очікувані вихідні дані – невиконання «надісла-

ти повідомлення» та повідомлення про помилку.
Тест 4.
Вхідні дані тесту – надіслати повідомлення.
Умови виконання – незареєстрований кори-

стувач; розмір повідомлення < 10000 символів.
Очікувані вихідні дані – невиконання «надісла-

ти повідомлення» та повідомлення про помилку.

Рис. 1. ДВВ надсилання повідомлення

68 Электроника и связь 1’ 2010

Для отримання тестів використано метод
граничних умов та класів еквівалентності.

За методом граничних умов необхідно про-
тестувати реакцію системи на значення, які зна-
ходяться безпосередньо на межі, менші за неї
та більші, тобто на кожне обмеження, що є в си-
стемі, має бути спроектовано три тести. На ДВВ
надсилання повідомлення (рис.1) представлене
обмеження на розмір повідомлення – 10000 си-
мволів, відповідно до методу граничних умов,
створюються тести для повідомлень із розміром
рівно 10000 символів, менше та більше
10000 символів (тести 1–3). Метод класів екві-
валентності полягає в тому, що мають бути про-
ведені тести для представників як правильних
класів еквівалентності так і неправильних. На-
приклад, правильним класом еквівалентності є
належність до ролі зареєстрований користу-
вач, а неправильним – не є зареєстрованим ко-
ристувачем (тести 1, 4).

На практиці ДВВ є не лише набором бінар-
них відносин актор – варіант використання, а й
послідовністю взаємодій. Зважаючи на те, що
перевірка функціонування окремих складових
системи ще не гарантує перевірку системи за-
галом, необхідно згенерувати тести, спрямовані
на перевірку всіх послідовностей взаємодії, тоб-
то шляхів між акторами й варіантами викорис-
тання. В цьому випадку вхідними даними буде
послідовність варіантів використання, що міс-
титься на ДВВ. Умови та очікувані результати
створюються аналогічно з вище наведеним.

Отже, для аналізу кожної ДВВ пропонується
згенерувати тести як для всіх варіантів викорис-
тання, так і для їх послідовностей з урахуванням
акторів та обмежень.

Розглянемо аспекти побудови системи ав-
томатичної генерації тестів з ДВВ.

3. Концептуальні основи побудови
програмного забезпечення для автоматичного
створення тестів

Вхідними даними для системи автоматичної
генерації тестів є ДВВ. Проте безпосередньо
працювати з множиною графічних примітивів не
є зручним. Нині всі сучасні програми для ство-
рення UML-діаграм підтримують експорт у файл
формату XMI. XMI (Extensible Markup Language
Metadata Interchange) – стандарт консорціуму
OMG, для обміну ме́та-інформацією, який може
застосовуватися для будь-якої метамоделі, кот-
ра відповідає специфікації MOF (Meta-Object
Facility). Основною метою OMG є розробка ста-
ндартів для розподілених об’єктно-орієнтованих
систем і модельно-орієнтованих стандартів. То-
му пропонується вибрати цей формат файлів як

опис вхідних даних для створюваної програми.
Як було зазначено вище, UML-діаграму ва-

ріантів використання можна подати у вигляді
змішаного графа.

Змішаний граф G – це граф, у якому деякі
ребра можуть бути орієнтованими, а деякі – не-
орієнтованими. Він записується впорядкованою
трійкою G = (V, E, A), для якої виконуються ниж-
ченаведені умови:

V – множина вершин;
E – множина невпорядкованих пар окремих

вершин, які називаються ребрами;
A – це множина впорядкованих пар різних

вершин, що називаються дугами.
Дуга – це впорядкована пара вершин (v,w),

де вершину v називають початком, а w кінцем
дуги.

Розділимо основні елементи ДВВ на верши-
ни, ребра та дуги.

Вершинами є:
− варіанти використання;
− актори;
− обмеження;
− примітки.

До ребер належать:
− асоціації.

Дугами вважатимемо:
− розширення;
− включення;
− узагальнення.

Пропонується перетворити вхідні дані (ДВВ
у форматі XMI) на граф вище означеного виду.
Для організації зберігання графа в пам’яті має
сенс використовувати матрицю суміжності. Мат-
риця суміжності – це таблиця, де як рядки, так і
стовпці відповідають вершинам графа. В кожно-
му елементі цієї матриці записується число, яке
визначає тип зв’язку від вершини-рядка до вер-
шини-стовпця. Недоліком цього методу збере-
ження графа є вимоги до оперативної пам’яті –
квадратична залежність від кількості вершин
графа. Однак за рекомендацією консорціуму
OMG кількість варіантів використання на одній
ДВВ не повинна перевищувати 25 [5], тому в
даному випадку цей недолік не має істотного
впливу, проте наявність швидких і простих алго-
ритмів для обробки матриці суміжності підтвер-
джує правильність вибору цього методу.

Зважаючи на те, що елементи матриці від-
повідають вершинам, ребрам та дугам графа,
створеного з відповідної ДВВ, з нього отримують
всю необхідну інформацію для створення шаб-
лону тесту, а саме – вхідні дані, умови виконан-
ня та очікувані результати, за процедурою
показаною в попередньому параграфі.Обхід
матриці суміжності дозволяє виявити всі існуючі

Информационные системы и технологии 69

маршрути між вершинами графа, тобто послідо-
вності на ДВВ.

Робота системи автоматичного створення те-
стів полягає в тому, що на вхід (у блок розбиран-
ня XMI) подається ДВВ у форматі XMI, після роз-
бирання XMI у блоці побудови графа UML моделі
формується відповідний граф та зберігається у
вигляді матриці суміжності. У блоці генерації тес-
тових сценаріїв здійснюється обхід матриці та
формування шаблону тестів, який містить вхідні
дані, очікуваня результати та умови виконання.

Структурна схема програми представлена
на рис. 2.

Рис. 2. Структурна схема програми автоматичного
створення тестів

Висновки

Запропонована система автоматизує процес
створення тестів, а отже, дає можливість змен-
шити кількість часу і коштів, необхідних для
процесу тестування. Результатами роботи сис-
теми є шаблони тестів, що містять вхідні дані
для тесту, умови виконання та очікувані резуль-
тати. Генерація тестів в автоматичному режимі
на базі аналізу ДВВ дозволяє уникнути пропус-
кання важливих тестів та неповноти покриття
специфікації.

Представлена структура системи автома-
тичного створення тестів може бути рекомендо-
вана до використання в подальших розробках, а
саме для генерування тестів не тільки з ДВВ, а й
інших UML-діаграм, таких як діаграма станів та
діаграма послідовностей.

Література

1. Kruchten Ph. Rational Unified Process: An In-
troduction. – Addison-Wesley, 2003. – 277 p.

2. Patton R. Software Testing. – 2nd edn. Sams,
2005. – 408 р.

3. Дідковська М.В. Дослідження та аналіз графіч-
них моделей функціональних вимог до Web-
проектів // Наукові вісті. – 2007, № 6. – С. 49–54.

4. Дидковская М.В. Создание тестов и оценивание
времени тестирования с помощью UML-диаг-
рамм вариантов использования // Электроника
и связь. – 2007, № 2(37). – С. 79–81.

5. Object Management Group. UML 2.0 Super-
structure Specification. – Framingham, Massa-
chusetts. – 2004. – http://www.omg.org/cgi-
bin/doc?formal/05-04-01.pdf

6. Майерс. Г. Искусство тестирования программ:
Пер с англ. под ред. Б.А. Позина. – М.: Фи-
нансы и статистика, 1982. – 172 с.

Национальный технический университет Украины
«Киевский политехнический институт»

Поступила в редакцию 18 апреля 2008 г.

http://www.omg.org/cgi

