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УДК 681.3.058 
О.Б. Хруставка 

Экспериментальное исследование модифицированного 
эволюционного алгоритма 

Исследуется влияние различных комби-
наций генетических операторов на качество 
решения оптимизационных задач с помо-
щью гибридного эволюционного алгоритма. 
Приведены результаты исследования, по-
лученного на множестве тестовых задач, 
включающем в себя многоэкстремальные и 
многокритериальные задачи оптимизации. 

The influence of different combinations of 
genetic operators on a quality of solution of op-
timization problems using a hybrid evolutionary 
algorithm is analyzed. The results of the re-
search over a set of test problems including 
multiextremal and multiobjective optimization 
problems are presented. 

Ключевые слова: эволюционный алго-
ритм, гибридизация эволюционного алгорит-
ма, задача оптимизации, генетические опе-
раторы (отбор, кроссовер, мутация), опти-
мальная комбинация генетических операто-
ров, фронт Парето, база правил. 

Введение 

В работе [1] был представлен аналитический 
обзор существующих модификаций генетических 
операторов, разработанных и использованных в 
ряде эффективных эволюционных алгоритмов за 
последние полтора десятилетия. В результате 
исследования различных оптимизационных за-
дач на большом количестве тестовых примеров 
было доказано, что они требуют применения 
различных типов генетических операторов, и, 
следовательно, повышение эффективности лю-
бого эволюционного алгоритма при решении за-
дач оптимизации невозможно без тщательного 
анализа решаемой задачи и подбора соответст-
вующих модификаций генетических операторов 
под данную задачу. Однако дальнейшие иссле-
дования в этой области [2, 3] показали, что на 
качество решения конкретной оптимизационной 
задачи влияют не только сами применяемые ге-
нетические операторы, но и их комбинации. Под 
комбинацией генетических операторов понимают 
процедуру последовательного применения трех 
основных операторов – отбора, кроссовера и му-
тации. Были выявлены случаи, когда комбинация 
генетических операторов, кажущихся оптималь-
ными для решения данной задачи, приводила к 
получению худшего решения, хотя каждый из них 

по отдельности был признан наилучшим для 
данного типа задач. В данной работе этот фено-
мен подвергается детальному изучению на ши-
роком наборе тестовых оптимизационных задач. 
Целью работы является детальное исследова-
ние влияния различных комбинаций генетиче-
ских операторов на качество решения оптимиза-
ционных задач (т. е. на качество найденных с 
помощью эволюционного алгоритма оптималь-
ных решений за заданное число поколений). В 
основу алгоритма положена гибридная эволюци-
онная архитектура, предложенная в работе [2]. 

Анализ влияния выбранной комбинации  
генетических операторов на качество 
решения задачи 

Для работы любого эволюционного алгоритма 
необходимо сочетание трех основных генетиче-
ских операторов: отбора, кроссовера и мутации. 
Выбор методов, реализующих данные генетиче-
ские операторы, имеет важнейшее значение, так 
как от этого зависит способность алгоритма ре-
шить поставленную задачу. Как уже было отмече-
но выше, не меньшее значение, чем подбор мето-
дов, реализующих генетические операторы, имеет 
подбор их оптимальной комбинации, максимально 
увеличивающей эффективность алгоритма.  

Для исследования определен набор тестовых 
задач оптимизации (табл. 1–3), включающий в себя 
однокритериальные многоэкстремальные задачи 
без ограничений, двухкритериальные задачи без 
ограничений и задачи с ограничениями. Эти задачи 
отобраны как наиболее характерные из более чем 
50 тестовых задач, приведенных в статьях, посвя-
щенных описанию различных вариантов генетиче-
ских алгоритмов [4–8], в том числе и в работе [9]. 

Рассматриваемые генетические операторы 
реализуется одним из нескольких основных ме-
тодов, применяемых при решении сложных оп-
тимизационных задач [10, 11]: 
− оператор отбора: метод рулетки и турнир-

ный метод отбора (на основе рангового 
принципа селекции); 

− оператор кроссовера: двухточечный и рав-
номерный кроссовер; 

− оператор мутации: гауссова и адаптивная 
мутация (виды управляемой мутации). 

В результате получаем восемь комбинаций ге-
нетических операторов (табл. 4). 
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Таблица 1. Однокритериальные тестовые задачи без ограничений 

Тестовая 
задача 

Кол-во 
перем. 

Область 
допустимых 
значений 

Целевая функция f(x) Оптимум 
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 Продолжение табл. 1 

Тестовая 
задача 

Кол-во 
перем. 

Область 
допустимых 
значений 

Целевая функция f(x) Оптимум 
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Таблица 2. Двухкритериальные тестовые задачи без ограничений 

Тестовая 
задача 

Кол-во 
перем. 

Область  
допустимых 
значений 

Целевая функция f(x) Оптимум 
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Продолжение табл. 2 

Тестовая 
задача 

Кол-во 
перем. 

Область  
допустимых 
значений 

Целевая функция f(x) Оптимум 
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Таблица 3. Тестовые задачи с ограничениями 

Тестовая 
задача 

Кол-во 
перем. 

Область  
допустимых 
значений 

Целевая функция f(x) Ограничения Оптимум 
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Таблица 4. Исследуемые комбинации генетических операторов 

Состав комбинации генетических операторов Номер 
комбинации Оператор отбора Оператор кроссовера Оператор мутации 

I метод рулетки двухтотечный кроссовер гауссова мутация 
II метод рулетки двухтотечный кроссовер адаптивная мутация 
III метод рулетки равномерный кроссовер гауссова мутация 
IV метод рулетки равномерный кроссовер адаптивная мутация 
V турнирный отбор двухтотечный кроссовер гауссова мутация 
VI турнирный отбор двухтотечный кроссовер адаптивная мутация 
VII турнирный отбор равномерный кроссовер гауссова мутация 
VIII турнирный отбор равномерный кроссовер адаптивная мутация 

 
Целью исследования является определение 

наилучшей комбинации генетических операто-
ров для каждой группы тестовых задач. Под 
наилучшей комбинацией понимают такое соче-
тание генетических операторов, которое приво-
дит к нахождению наилучшего решения. Как 
было отмечено выше, наилучшей комбинацией 
не обязательно будет такая комбинация, кото-
рая состоит из наилучших (для данной задачи) 
генетических операторов. Но для начала рас-
смотрим влияние отдельных генетических опе-
раторов на ход решения задачи. 

Отбор по методу рулетки в случае одноэкс-
тремальных задач с небольшим количеством 
переменных приводит к быстрой сходимости 
алгоритма за счет поддержки особей с высоким 
значением функции приспособленности, но на 
более сложных задачах приводит к вырожде-
нию и преждевременной сходимости. По этой 
причине данный оператор отбора практически 
никогда не применяется при решении многокри-
териальных оптимизационных задач. Турнир-
ный отбор является более сложным (с точки 
зрения вычислительной сложности) методом, 
что в случае решения простых задач дает 
большее время сходимости по сравнению с от-
бором по методу рулетки, но при решении 
сложных многоэкстремальных или многокрите-
риальных задач он является наиболее подхо-
дящим методом. 

Оператор кроссовера сам по себе практиче-
ски не влияет на форму кривой сходимости, но, 
будучи применен с теми или иными методами 
мутации и отбора, способен компенсировать 
или, наоборот, подчеркивать недостатки этих 
методов.  

Гауссова (равномерная) мутация всегда да-
ет гораздо большее разнообразие решений, 
чем адаптивная, но, тем самым, замедляет ско-
рость сходимости алгоритма. Адаптивная мута-
ция на простых задачах приводит к очень быст-
рой сходимости (20–30 поколений), но в случае 
более сложных задач может привести к вырож-
дению популяции, и тем самым – к преждевре-

менной сходимости, в результате чего глобаль-
ных оптимум не будет найден. 

Следует отметить одну важную особенность 
рассматриваемых комбинаций генетических опе-
раторов. Исследуемые генетические операторы, 
входящие в состав каждой из восьми комбина-
ций, являются наиболее типичными и широко 
применяемыми. Однако во многих работах, по-
священных модификациям генетических алго-
ритмов [5–7, 11–13], эти операторы были также 
модифицированы, чтобы наилучшим образом 
соответствовать целям и задачам конкретного 
алгоритма. При этом суть оператора, и, следова-
тельно, его свойства, остаются неизменными. 
Это означает, что внутри комбинации любой ге-
нетический оператор может быть заменен какой-
либо из своих модификаций, и это не повлияет 
на эффективность комбинации в целом. Таким 
образом, данное исследование на самом деле 
охватывает более широкий спектр различных 
сочетаний генетических операторов, чем восемь 
базовых комбинаций. Возможность замены гене-
тического оператора в классической форме лю-
бой его модификацией может объясняться с по-
мощью принципа максимума взаимной инфор-
мации [14] между генетическими операторами 
внутри комбинации, что представляет собой 
предмет дальнейших исследований. 

Для однокритериальных задач будем ис-
следовать все восемь комбинаций генетических 
операторов, а для двухкритериальных задач – 
только четыре комбинации (V–VIII), поскольку 
для многокритериальных задач оптимизации 
отбор по методу рулетки не используется. Для 
всех тестовых задач, кроме TF1 и TF2, гауссова 
мутация заменяется на равномерную мутацию 
(подвид гауссовой мутации, которая определе-
на на области допустимых значений тестовой 
функции), чтобы исключить нахождение недо-
пустимых решений. 

Данное исследование проводится с помо-
щью эволюционного алгоритма, предложенного 
в работе [2], в среде MATLAB 7.7. Параметры 
алгоритма следующие: 
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− размер популяции 100, популяция разбита на 
две подпопуляции по 50 особей каждая, между 
ними осуществляется двусторонняя миграция; 

− вероятность кроссовера равна 0,8, вероят-
ность мутации – 0,01; 

− критерий останова алгоритма – 2000 поко-
лений; 

− алгоритм является гибридным, гибридиза-
ция осуществляется с помощью метода 
градиентного спуска; 

− в фронт Парето (в двухкритериальных за-
дачах) включаются все найденные недоми-
нируемые решения; 

− экспериментальные результаты по каждой 
комбинации генетических операторов пред-
ставляют собой усредненное значение по 
20 независимым запускам алгоритма. 

Характеристики тестовых задач 

Тестовые задачи TF1 и TF2 являются про-
стыми однокритериальными задачами оптими-
зации и характеризуются наличием единствен-
ного глобального минимума. 

Тестовые задачи F1–F14 представляют со-
бой задачи большой размерности (т. е. содержат 
большое количество переменных). Тестовые за-
дачи F1–F9 являются многоэкстремальными за-
дачами, причем количество локальных миниму-
мов экспоненциально возрастает в зависимости 
от размерности задачи, например, задача F7 
имеет n! локальных минимумов, а задача F9 – 2n 
локальных минимумов, где n – количество пере-
менных. Тестовая задача F2 представляет собой 
сложную многоэкстремальную функцию с боль-
шим количеством локальных минимумов, при 
решении которой главной задачей алгоритма яв-
ляется обеспечение разнообразия решений в 
каждой популяции. Тестовая задача F3 содержит 
узкую область, в которой находится глобальный 
оптимум, и много локальных минимумов. В тес-
товой задаче F4 наблюдается взаимосвязь меж-
ду переменными, что затрудняет процесс при-
ближения к глобальному оптимуму. Тестовые 
задачи F10 и F11 являются унимодальными. 
Тестовые задачи F16–F18 представляют собой 
задачи малой размерности (т. е. содержат малое 
количество переменных) и имеют несколько ло-
кальных минимумов. Главной трудностью тесто-
вой задачи F20 является наличие множества 
глубоких локальных минимумов, расположенных 
далеко от глобального оптимума в пространстве 
поиска. Тестовая задача F21 содержит непре-
рывную область определения, но является 
дифференцируемой лишь на небольшой подоб-
ласти области определения. 

Тестовые задачи CF1–CF3 представляют 
собой однокритериальные тестовые задачи с 
ограничениями. Задача CF2 имеет единствен-
ный глобальный минимум в допустимой облас-
ти, задача CF3 – единственный глобальный и 
несколько локальных минимумов. Тестовая за-
дача CF1 содержит нелинейные ограничения. 

Тестовая задача SCH имеет выпуклый рав-
номерный фронт Парето, а задача FON – невы-
пуклый фронт Парето. В тестовой задаче KUR 
имеется три дискретные области в оптималь-
ном фронте Парето. Тестовая задача POL име-
ет разрывный фронт Парето. 

Тестовая задача ZDT1 имеет выпуклый не-
разрывный оптимальный фронт Парето, а тесто-
вая задача ZDT2 – невыпуклый неразрывный оп-
тимальный фронт Парето. В тестовых задачах 
ZDT1, ZDT2 первая целевая функция всегда яв-
ляется функцией одной переменной: f1(x) = x1. 
Это означает, что если гены, кодирующие пере-
менную x1, представляют собой равномерно 
распределенные случайные числа, то уже на-
чальное приближение фронта Парето распро-
страняется по всей области определения первой 
целевой функции f1(x). Следовательно, оптими-
зация будет заключаться только в минимизации 
второй целевой функции f2(x), что значительно 
легче, чем минимизировать обе целевые функ-
ции одновременно. Тестовая задача ZDT4 пред-
ставляет собой более сложный вариант: она 
имеет 219 различных локальных оптимальных 
фронта Парето в пространстве поиска, из кото-
рых только один является глобальным. Тестовая 
задача ZDT6 является наиболее трудной для 
решения с помощью эволюционных алгоритмов 
и часто требует предварительного специального 
подбора параметров. Хотя в фронте Парето за-
дачи ZDT6 нет разрывов, актуальна проблема 
недостаточного разнообразия решений в резуль-
тирующей популяции, что может привести к 
преждевременной сходимости. 

В тестовой задаче CONSTR часть неограни-
ченной оптимальной области Парето является 
недопустимой. Первое линейное ограничение 
отрезает некоторую подобласть оптимальной 
области Парето, в результате чего первая часть 
фронта Парето располагается вдоль первого 
ограничения в пространстве целей, а вторая 
лежит на части истинного фронта Парето. 

Экспериментальные результаты 

Однокритериальные задачи 
Для однокритериальных тестовых задач 

критерием эффективности алгоритма является 
точность найденного значения целевой функ-
ции f(x). 
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Тестовые задачи TF1 и TF2 являются самы-
ми простыми из всего набора тестовых задач, 
поэтому критерий останова алгоритма снижен до 
500 поколений. Данные тестовые задачи эффек-
тивно решаются с помощью любой из рассмат-
риваемых комбинаций генетических операторов, 
однако легко заметить, что комбинации, содер-
жащие адаптивную мутацию, приводят к наибо-
лее быстрой сходимости алгоритма (20–30 поко-
лений), тогда как комбинации, содержащие гаус-
сову мутацию – к медленной сходимости (около 
500 поколений) из-за огромного разнообразия 
решений, порождаемого этим типом мутации. 
Также влияние на скорость сходимости оказыва-
ет оператор отбора – в данном случае отбор по 
методу рулетки является более эффективным, 
чем турнирный отбор. Равномерный кроссовер в 
сочетании с адаптивной мутацией (комбинации 
IV и VIII) наиболее эффективен, даже при тур-
нирном отборе. 

Тестовые задачи F1–F4, F7, F9 содержат ог-
ромное количество локальных минимумов и 
один глобальный минимум, найти который мож-
но только алгоритмом с комбинацией, содер-
жащей равномерную мутацию, поскольку адап-
тивная мутация приводит к очень быстрому вы-
рождению и, как следствие, преждевременной 
сходимости, когда алгоритм застревает в одном 
из множества локальных минимумов. При этом 
сочетание равномерной мутации и равномерно-
го кроссовера (комбинация III) является наибо-
лее эффективным при отборе по методу рулет-
ки. При этом для всех задач группы комбинация 
II (двухточечный кроссовер + равномерная му-
тация) также неизменно приводит к застрева-
нию в локальном оптимуме. Тестовая задача F4 
является наиболее сложной, поскольку содер-
жит параметрическую взаимосвязь генов (про-
блема эпистазиса), вследствие чего наилучшей 
комбинацией, наряду с комбинацией III, стано-
вится комбинация II (двухточечный кроссовер + 
адаптивная мутация). 

Функция Розенброка (F10) является наибо-
лее сложной для оптимизации во всем рас-
сматриваемом наборе тестовых задач, она со-
держит сразу две особенности – эпистазис ге-
нов и зависимость количества локальных опти-
мумов от размерности задачи, в результате че-
го уже при 30 переменных поиск глобального 
оптимума становится крайне трудной задачей, 
решить которую может только гибридный алго-
ритм. Как и для тестовой задачи F4, эпистазис 
приводит к преимуществу комбинации II. 

Тестовые задачи F11, F13, F14 обладают 
только одной негативной чертой – зависимо-
стью количества локальных оптимумов от раз-

мерности задачи, и их особенности сходимости 
практически аналогичны тестовым задачам 
группы F1 – F9, но при 30 переменных к наи-
лучшей комбинации III приближаются комбина-
ции II, VI (двухточечный кроссовер + адаптивная 
мутация), причем в задаче F14 комбинация II 
становится лидирующей. 

Особенностью задач F16, F17 является на-
личие двух глобальных минимумов, причем 
предложенный алгоритм при разных запусках 
способен найти различные минимумы. Посколь-
ку число переменных равно 2, то для обеих 
рассматриваемых задач наилучшими являются 
комбинации, содержащие адаптивную мутацию 
(как для задач TF1, TF2), которая приводит к 
очень быстрой сходимости алгоритма к одному 
из двух глобальных минимумов, но в данном 
случае метод отбора на результат не влияет. 

Тестовая задача F18, несмотря на сложное 
аналитическое выражение, является упрощен-
ным вариантом задач F16, F17, т. е. обладает 
единственным оптимумом и теми же особенно-
стями, что и указанные тестовые задачи. 

Тестовая задача F20 обладает множеством 
локальных минимумов, которые к тому же нахо-
дятся далеко от глобального оптимума в про-
странстве поиска. Основной задачей здесь яв-
ляется обеспечение разнообразия решений, но 
при этом алгоритм должен успеть сойтись за 
2000 поколений, поэтому комбинация III (равно-
мерный кроссовер + равномерная мутация при 
отборе по методу рулетки) является наилучшей. 

Тестовая задача F21 обладает вычисли-
тельной проблемой – она является дифферен-
цируемой только в узкой области экстремума, а 
это означает, что основная вычислительная на-
грузка ложится на генетическую часть алгорит-
ма. По своим особенностям данная задача по-
хожа на задачи группы F1–F9, при этом наи-
лучшей является комбинация III. 

Тестовые задачи CF1, CF2 имеют единст-
венный глобальный минимум в допустимой об-
ласти, поэтому наилучшей комбинацией будет 
комбинация III. Тестовая задача CF3 имеет так-
же локальные минимумы в области допустимых 
решений, наилучшими комбинациями являются 
комбинации III, V.  

Результаты исследования некоторых одно-
критериальных тестовых задач приведены в 
табл. 5. Здесь указаны численные значения це-
левой функции (ЦФ) для наилучшей комбина-
ции генетических операторов. Эти данные будут 
использоваться для построения базы правил 
выбора наилучшей комбинации генетических 
операторов для эволюционного алгоритма.
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Таблица 5. Результаты исследования некоторых однокритериальных тестовых задач  

 
Двухкритериальные задачи 
При решении многокритериальных задач 

целью является построение фронта Парето; 
следовательно, основной проблемой является 
обеспечение разнообразия решений. С этой 
целью отбор по методу рулетки не применяет-
ся, так как он в любом случае приводит к 
уменьшению разнообразия в популяции. Таким 
образом рассматриваются только четыре ком-
бинации генетических операторов (V–VIII). Вво-
дится специальный критерий эффективности – 
критерий Δ, который характеризует разброс ре-
шений, полученных с помощью алгоритма [4]. 
Неравномерность распределения решений в 
фронте Парето вычисляется по формуле: 
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где df, dl – Эвклидовы расстояния между экс-
тремальными решениями найденного фронта и 
истинного фронта Парето; di – расстояние меж-
ду соседними решениями в фронте Парето;  
d  – среднее значение между всеми расстоя-
ниями di, i = 1, 2,…, N-1; N – количество недо-
минируемых решений в фронте Парето. 

В идеальном случае все значения расстоя-
ний di равны среднему значению d , при этом  
df = dl = 0, это соответствует наиболее широко-
му равномерному разбросу недоминируемых 
решений в фронте Парето. Во всех остальных 
случаях значение критерия Δ будет больше ну-
ля. Максимальное значение критерия Δ может 
быть больше единицы, если существует боль-
шой разброс значений di. 

Как следует из экспериментально получен-
ных результатов, комбинация V (двухточечный 
кроссовер + равномерная мутация) имеет очень 

большое значение критерия Δ в случае реше-
ния наиболее простых задач, к которым отно-
сится тестовая задача SCH. При решении более 
сложных задач (ZDT1–ZDT6), комбинация V по-
зволяет получить наиболее равномерный 
фронт Парето, но найденный фронт может не 
лежать близко к истинному фронту Парето. 

Комбинация VI (двухточечный кроссовер + 
адаптивная мутация) может привести к нерав-
номерности фронта Парето при решении слож-
ных задач с относительно большим числом пе-
ременных (ZDT6), но найденный фронт лежит 
наиболее близко к истинному фронту Парето.  

Комбинации VII, VIII (равномерный кроссо-
вер) в случае решения сложных задач приводят 
к нахождению крайних точек фронта, которые 
лежат далеко от истинного фронта Парето, что 
отражается в значительном увеличении крите-
рия Δ, но при этом сам фронт является наиболее 
равномерным и близким к истинному фронту Па-
рето, по сравнению с комбинациями V и VI. 

Комбинации V, VII, содержащие равномер-
ную мутацию, не могут применяться для реше-
ния задач с линейными или нелинейными огра-
ничениями, поскольку могут находить недопус-
тимые решения. 

Таким образом, для тестовой задачи SCH 
наилучшей является комбинация VI; для тесто-
вых задач KUR, FON – комбинация VII; для тес-
товой задачи ZDT1 наилучшими являются ком-
бинации V, VI; для более сложных тестовых за-
дач POL, ZDT2 и ZDT4 наилучшей является 
комбинация V; для наиболее сложной тестовой 
задачи ZDT6 – комбинация VII. Для тестовой 
задачи CONSTR наилучшей является комбина-
ция VIII. 

Результаты исследования некоторых двухкри-
териальных тестовых задач приведены в табл. 6. 

Тестовая 
задача TF1 F1 F2 F3 F4 F7 F10 F13 

Лучшие 
комбинации IV III III III II III II II, III, IV 

Значение ЦФ 
(наилучшая 
комбинация) 

0 -12569,49 1,31·10-8 5,74·10-6 7,90·10-10 -97,998 4,75·10-8 2,42·10-5 

Тестовая 
задача F14 F16 F17 F18 F20 F21 CF2 CF3 

Лучшие 
комбинации II, III, IV IV, VIII IV, VIII IV III III III III, V 

Значение ЦФ 
(наилучшая 
комбинация) 

1,76·10-7 -1,032 0,398 3 1,27·10-4 7,09·10-6 -2,333 0 
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Таблица 6. Результаты исследования некоторых двухкритериальных тестовых задач 

Тестовая 
задача SCH FON KUR POL ZDT1 ZDT2 ZDT4 ZDT6 CONSTR 

Лучшие 
комбинации VI VII VII V V, VI V V VII VIII 

Значение Δ 
(наилучшая 
комбинация) 

0,1676 0,1234 0,1911 0,2667 0,0910 0,1248 0,2063 0,2063 0,1762 

 
Здесь указаны численные значения критерия Δ 
для наилучшей комбинации генетических опе-
раторов. 

Выводы 

В результате проведенных исследований 
можно сделать следующий вывод: для любого 
класса тестовых оптимизационных задач суще-
ствует комбинация (комбинации) генетических 
операторов, которая является наилучшей для 
любой задачи, принадлежащей этому классу. 
Каждый класс задач характеризуется опреде-
ленным набором свойств (параметров). Следо-
вательно, можно поставить в соответствие не-
которому набору характеристик тестовых задач 
наилучшую комбинацию генетических операто-
ров. В результате получаем базу правил, с по-
мощью которой для каждой оптимизационной 
задачи, обладающей определенными свойст-
вами, можно найти наилучшую (наиболее эф-
фективную) комбинацию генетических операто-
ров. В данном случае, каждый компонент базы 
правил характеризуется следующими парамет-
рами: размерность задачи, область определе-
ния, наличие эпистазиса, количество и тип экс-
тремумов, наличие линейных и нелинейных ог-
раничений, для многокритериальных задач – 
вид фронта Парето. Следует отметить, что по-
строенная база правил не является полной, но 
охватывает все рассмотренные классы типовых 
тестовых задач. 

Правила выбора комбинации генетических 
операторов для однокритериальных тесто-
вых задач: 

Если количество переменных задачи неве-
лико и область определения [ 5, 5]−  и парамет-
рическая взаимосвязь генов отсутствует и су-
ществует единственный экстремум, который 
является глобальным оптимумом, то наилуч-
шей комбинацией является комбинация IV. 

Если количество переменных задачи неве-
лико и область определения [ 5, 15]−  и парамет-
рическая взаимосвязь генов отсутствует и су-
ществует несколько экстремумов, каждый из ко-
торых является глобальным оптимумом, то 

наилучшими комбинациями являются комбина-
ции IV, VIII. 

Если количество переменных задачи велико 
и область определения [ 100, 100]−  и парамет-
рическая взаимосвязь генов отсутствует и су-
ществует единственный глобальный оптимум, 
то наилучшими комбинациями являются ком-
бинации II, III, IV. 

Если количество переменных задачи велико 
и область определения [ 600, 600]−  и задача 
содержит параметрическую взаимосвязь генов 
(проблема эпистазиса) и существует один или 
множество оптимумов, то наилучшей комбина-
цией является комбинация II. 

Если количество переменных задачи велико 
и область определения [ 500, 500] [0, ]− ∪ π  и па-
раметрическая взаимосвязь генов отсутствует и 
существует глобальный оптимум и множество 
локальных оптимумов, то наилучшей комбина-
цией является комбинация III. 

Если количество переменных задачи неве-
лико и область определения [ 3, 3]−  и парамет-
рическая взаимосвязь генов отсутствует и су-
ществует единственный оптимум, который яв-
ляется глобальным, и задача содержит линей-
ные или нелинейные ограничения, то наилуч-
шей комбинацией является комбинация III. 

Если количество переменных задачи неве-
лико и область определения [0, 10]  и парамет-
рическая взаимосвязь генов отсутствует и су-
ществует глобальный оптимум и несколько глу-
боких локальных оптимумов и задача содержит 
линейные или нелинейные ограничения, то 
наилучшими комбинациями являются комбина-
ции III, V. 

Правила выбора комбинации генетических 
операторов для многокритериальных тесто-
вых задач: 

Если количество переменных задачи неве-
лико и фронт Парето выпуклый неразрывный и 
параметрическая взаимосвязь генов отсутству-
ет, то наилучшей является комбинация VI. 

Если количество переменных задачи неве-
лико и фронт Парето невыпуклый неразрывный 
или состоит из нескольких частей и параметри-
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ческая взаимосвязь генов отсутствует, то наи-
лучшей является комбинация VII. 

Если количество переменных задачи неве-
лико и фронт Парето невыпуклый разрывный и 
параметрическая взаимосвязь генов отсутству-
ет, то наилучшей является комбинация V. 

Если количество переменных задачи велико 
и фронт Парето невыпуклый неразрывный и па-
раметрическая взаимосвязь генов присутствует, 
то наилучшей является комбинация V. 

Если количество переменных задачи неве-
лико и фронт Парето выпуклый или невыпуклый 
неразрывный и имеются линейные или нели-
нейные ограничения, то наилучшей является 
комбинация VIII. 
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