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Излучение звуковых волн секционированным цилиндрическим 
пьезокерамическим преобразователем, подключенным  

к длинной линии

В результате решения задачи об излуче-
нии акустических волн круговым цилиндри-
ческим пьезокерамическим преобразовате-
лем с разрезными электродами в электро-
упругой постановке найден алгоритм, по-
зволяющий аналитически определять дина-
мические характеристики указанного источ-
ника звука. 

Тhе algorithm of analytic determination the 
dynamics characteristics of electroelastics cy-
lindrical transdusers with disconnected elec-
trodes and long cable tracts is obtain for prob-
lem of acoustic radiation in conditions of inter-
action the acoustics, mechanics and electrics 
fields. 
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Введение 

В настоящее время задачи об излучении зву-
ковых волн в сквозной подстановке представле-
ны достаточно широко. Тем не менее, в рамках 
теории гидроэлектроупругости вопросы о возбу-
ждении пьезокерамических преобразователей в 
традиционном стационарном режиме в основном 
рассмотрены лишь для пьезокекрамических пре-
образователей с полностью электродированны-
ми поверхностями (см., например работы [1–3]). 
Случаи использования излучающих преобразо-
вателей со сплошными электродами и элетро-
дами в виде секций исследованы лишь в неста-
ционарной подстановке [3–6]. В указанных рабо-
тах основное внимание уделено сферическим и 
цилиндрическим источникам звука, как наиболее 
часто встречающимся при решении сквозных за-
дач. Известно [7], что применение электродов в 
виде секций, частично покрывающих поверх-
ность преобразователя, приводит к обогащению 
модовой структуры создаваемого акустического 
поля за счет использования высших форм коле-
баний поверхности и особенностей коммутации 
секций электродов. Поэтому, представляется ак-
туальным и целесообразным рассмотреть мо-
дель излучения звука в виде пьезокерамического 
цилиндрического преобразователя, на поверх-
ность которого нанесены разрезные секции-
электроды.  

Кроме этого, реальные условия работы боль-
шинства гидроакустических преобразователей 
предполагают использование протяженных ка-
бельных соединений. Известно [8, 9], что при со-
поставимости длин волн рабочего частотного 
диапазона и длины протяженных кабельных со-
единений, последние являются линиями с рас-
пределенными параметрами. Так для установив-
шихся режимов, в этой связи, следует отметить 
такие работы как [10–12]. Такая ситуация приво-
дит к необходимости учета параметров протя-
женных кабельных линий применительно к зада-
ваемому режиму работы линии по входу неким 
задающим генератором и ее динамической на-
грузке на выходе в виде пьезокерамического пре-
образователя. Все это и обуславливает цель дан-
ной работы, которая заключается в описании про-
цесса излучения звуковых волн погруженной в 
идеальную жидкость пьезокерамической цилинд-
рической круговой оболочкой, на поверхность ко-
торой нанесена пара разрезных электродов, при 
условии подключения её электродов к выходам 
задающих генераторов через однородную протя-
жённую электрическую линию с распределенны-
ми параметрами. 

1. Постановка задачи 

Рассматривается задача об излучении звука 
в сквозной подстановке, предполагающая оты-
скание давления в акустическом поле по задан-
ным электрическим характеристикам на выходе 
электрического задающего устройства. 

Полагаем, что в идеальной малосжимаемой 
жидкости с плотностью ρ0  и скоростью звука 0c  
размещен одиночный пьезокерамическый кру-
говой цилиндрический преобразователь беско-
нечной длины. Преобразователь представляет-
ся бесконечно длинной электроупругой, ради-
ально поляризованной оболочкой произвольно-
го срединного радиуса 0 jr  с толщиной стенки 

jh , где j – переменная, задающая номер обо-

лочки, (рис. 1). Внутри преобразователя – ваку-
ум. На поверхность преобразователя нанесены 
разрезные электроды, которые электрически не 
соединены друг с другом, а подключены к выхо-
дам длинных линий 11l  и 12l . По входу электри-
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ческие линии подключены к задающие генера-
торам ЗГ11 и ЗГ12. Толщина электродов, а так-
же оставшиеся неэлектродированными участки 
поверхности преобразователя считаются ма-
лыми, не влияющими на его электромеханиче-
ские характеристики и не требующими привле-
чения дополнительных граничных условий по 
механическому и электрическому полям. Считая 
оболочки тонкостенными, используем для опи-
сания движения их поверхности уравнения тео-
рии тонких оболочек, базирующихся на гипоте-
зах Кирхгофа-Лява [13, 14]. При этом, колеблю-
щаяся поверхность оболочки создает в рас-
сматриваемой жидкой среде акустическое поле, 
которое в рамках стационарного возбуждения 
описывается уравнением Гельмгольца. 

Введем ряд координатных систем (рис. 1): 
− общую декартову систему координат OXYZ , 

которая размещена так, что ось OX  лежит в 
плоскости нормального сечения оболочки, а 
ось OZ  совпадает с продольной осью  
оболочки; 

− локальную систему координат j j j jO X Y Z , 

совпадающую с общей декартовой  
системой; 

− локальную круговую цилиндрическую сис-
тему координат ( ϕo j j jr ), которая связана с 

декартовой системой известными форму-
лами перехода. 
Считаем, что  поле, создаваемое оболочкой 

(поле в точке ϕ( ; )j jM r ), представлено равенст-

вом M( ; )j jp p r= ϕ∑ . При этом, j jR r≤ < ∞ , где 

jR  – внешний радиус оболочки 0 2
j

j j
h

R r
 

= + 
 

, 

[0;2 ]jϕ ∈ π . 

Условия передачи электрического сигнала 
каждой протяженной кабельной линией 11l  и 

12l  описываются телеграфными уравнениями 
для линий фиксированной длины с малыми по-
терями [8, 9]. 
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Рис. 1 
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Конкретизируя положения постановки зада-
чи полагаем. 

1. В предложенной среде акустическое поле 
описывается уравнением Гельмгольца, запи-
санным относительно потенциала колебатель-
ной скорости Φ : 

 ∆Φ + Φ =2
в 0k , ( ),j jrΦ = Φ ϕ , (1) 

где ω
=вk

c
– волновое число, ω  – круговая  

частота. 
2. Для описания движения оболочки с уче-

том её бесконечной длины, используем систему 
уравнений (см., например, работу [2]), для кото-
рой перемещения в осевом направлении V  
считаем отсутствующими ( 0V = ). Таким обра-
зом, система уравнений движения j -й оболочки 
имеет следующий вид: 
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где 31e  – пьезомодуль; 11
EC  – модуль упругости; 

33
Sε  – диэлектрическая проницаемость; (0)

,r jE  – 

составляющая вектора напряженности электри-
ческого поля в радиальном направлении; ρm, j  – 

плотность пьезокерамики оболочки; t  – время; 
rq  – гидродинамическая нагрузка со стороны 

среды; а 
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соответственно тангенциальная и нормальная 
составляющие перемещения точек поверхности 
оболочки. 

3. Нагрузку rq  оболочки со стороны среды 
представляем акустическим воздействием вида: 

 ∑ =
= = ϕ( , ) ,

j j
r j j r R

q p p r  (4) 

где 
∂Φ ϕ

ϕ = ρ
∂0

( , )
( , ) j j

j j
r

p r
t

. 

4. На поверхности оболочки, которая контак-
тирует с жидкостью, выполняется условие со-
пряжения в виде равенства нормальных со-
ставляющих скоростей частиц среды и скоро-
стей смещения по нормали точек поверхности 
оболочки: 

 
=

∂ ∂ ϕ∂Φ
= − =

∂ ∂ ωρ ∂0

( , )1

r Rj j

j j j

j j

W p r
t r i r

. (5) 

5. Составляющие электромагнитного со-
стояния в каждой кабельной линии ( 11l  и 12l ) 
описываются с помощью уравнений электриче-
ской линии с распределенными параметрами 
(см., например, работу [9]) для ситуации зада-
ния напряжений и токов в начале линии: 
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В системах (6): 11x , 12x – текущая координата 

линий 11l  и 12l  соответственно; �
Н11U , 

�
Н12U  – напряжения на электродах 0 jγ  и 0 j′γ  со-

ответственно; �Н11I , �Н12I  – токи через преобра-
зователь со стороны электродов 0 jγ  и 0 j′γ  со-

ответственно; Г11U� , Г12U� , Г11I� , Г12I�  – напряже-
ния и токи на выходах генераторов ЗГ11 и ЗГ12 
соответственно; γ  – постоянная распростране-
ния линии с малыми потерями, которая опреде-
ляется из соотношения 

 γ = + − ω0 0 0 0
0 0

0 02 2
R C G L

i L C
L C

, (7) 

где 0R , 0G , 0L , 0C  – продольное активное со-
противление, поперечная проводимость, индук-
тивность и  емкость единицы длины линии со-
ответственно. При этом волновое сопротивле-
ние линии с малыми потерями ВZ  определяет-
ся из соотношения (для линии 1 – В11Z , а для 
линии 2 – В12Z , соответсвенно): 
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Заметим, что если линия не имеет потерь, 
то выражения (7) и (8) сводятся к виду: 
 γ = − ω 0 0i L C ; (9) 

 0
В

0

LZ
C

= . (10) 

Граничные условия задачи включают в себя: 
а) условия сопряжения вида (4); 
б) условие излучения Зоммерфельда; 
в) электрические условия, рассматриваемые 

относительно разностей электрических потен-
циалов на электродах преобразователя 11j∆ψ и 

12j∆ψ . При этом, для записи полной системы 

соотношений по электрическому полю, исполь-
зованы уравнения  вынужденной электростати-
ки [14]: 
 = =div 0;  rot 0,D E   

где D  – вектор электрической индукции; E  – 
вектор напряженности электрического поля, а 
также уравнения для определения значений 

Н11U , Н12U  и Н11I , Н12I  в любой точке линий 11l  
и 12l  для каждого из электродов. 

Поскольку электроды, нанесенные на поверх-
ность преобразователя-оболочки, – разрезные, 
считаем, что составляющая напряженности (0)

,r jE  

зависит от угла следующим образом: 

 ( ) ( ) ( )= ϕ = ϕ + ϕ(0) (0) (0) (0)
1 2, , , 11 , 12 ,j j jr j r j r j r jE E E f E f (11)  

где (0)
, 11r jE  и (0)

, 12r jE  – амплитуды напряженности 

для каждой из пар электродов. Амплитуды 
(0)
, 11r jE  и (0)

, 12r jE  с учетом работ [2, 14] записыва-

ются относительно разностей потенциалов на 
электродах преобразователя 11j∆ψ  и 12j∆ψ  

как: 
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Относительно функций ( )1 jf ϕ , ( )2 jf ϕ  заме-

тим, что они представляют собою функции 
включения вида ( )ϕ =rect Bf  при B = 1 [11], и 
могут быть разложены в ряд Фурье: 
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где 0 jγ , 0 j′γ  – углы, характеризующие половину 

раскрыва электродов. 
Токи через преобразователь со стороны со-

ответствующих электродов с площадями 11S  и 

12S  определяются по зарядам 11Q  и 12Q  с уче-
том бесконечной длины оболочки, гармониче-
ского характера возбуждения преобразователя 
и соотношений для компонента вектора элек-
трической индукции D  в направлении толщин-
ной координаты выражениями [14]: 
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Переходя к углу jϕ  для  

11 12, j j j jdS R d dS R d= ϕ = ϕ  и возможной длины 

преобразователя , запишем: 
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где jz  – вертикальная координата. 

Известно [14], что  

 ϕϕ= ε + ε(0)(0) (0)
33 31, ,S

r r jD E e  (16) 

где (0)
ϕϕε  – составляющая вектора деформаций  
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Таким образом, используя выражения (14) и 
(15), переходя к перемещениям jU  и jW , для 

электрических токов запишем: 
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2. Решение задачи 

С учетом представления внешней нагрузки 
оболочки со стороны среды как акустической, 
дополним систему (2) разложением для поля 
создаваемого цилиндрическим бесконечным по 
длине источником звука [15]: 
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где ( )j
mA  – неизвестные коеффициенты 

( −∞ < < ∞m ); (1)
mH  – функция Ханкеля первого 

рода порядка m . 
Подставляя выражения (3), (11)–(13) в урав-

нение движения оболочки (2), а также исполь-
зуя условие =div 0D  и уравнение (16) для оты-

скания 
∂

∂ϕ

(0)
,r j

j

E
, получим систему уравнений: 
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где ( ) ( )ω = − ω − +� 2 41 ;nN d abn  ( )21 ;nM n c abn= + +  
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Используя первое уравнение системы (19), 
устанавливая зависимость между тангенциаль-
ной ( )j

nU  и нормальной составляющей переме-

щений ( )j
nW  как 
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n
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 (20) 

а также, используя свойства полноты и ортого-

нальности функций вида ie jnϕ , − ϕe jip  на интер-
вале [0;2 ]jϕ ∈ π  для −∞ < < ∞n  и −∞ < < ∞p , 

найдем ( )j
nW  с учетом выражений (18)–(20): 
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где ′γγ ′= ξ + ξ� � �
Н11 Н12n n nU U U ; 

′
=�

2
cc . При этом ко-

эффициенты ξn  и ′ξn  определяются следую-
щим образом: 

 
= = +

ξ =  =π 

1 при 0 и 2 1;1
0 при 2n

n n p
n p

 ( )= 1,2,3,...p ,  

π′ξ = ξeik
n n . 

Как видно, данный вид электродирования 
определяет как электромеханически активные 
лишь нулевую и нечетные формы колебаний 
(смотри коэффициент nξ ). 

Далее, используя условия сопряжения (5) и 
полученное выражение (21), отыщем неизвест-
ный коэффициент разложения (18), изменив 
переменную суммирования с m  на n : 
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Таким образом, отыскав ( )j
nA , можно опре-

делить значение акустического давления, соз-
даваемого рассматриваемым излучателем 
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Предложенный подход также позволяет 
отыскать колебательную скорость на поверхно-
сти излучателя и в произвольной точке поля 
цилиндрической волны для различных сочета-
ний напряжений и токов Г11U� , Г12U� , Г11I� , Г12I�  в 
начале кабельной линии (выход задающего ге-
нератора), а так же составляющие перемеще-
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ний точек поверхности оболочки W  и U  (см. 
выражение (2)): 
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Токи через указанные группы электродов 

определяются при помощи выражений (17).  
Заметим, что в выражениях (17), первое 

слагаемое определяет статисческую состав-
ляющую общего реактивного сопротивления, а 
второе слагаемое – динамическую составляю-
щую. Так, что статические составляющие 

011C (для электродов с раскрывом 0 0[ ; ]j j−γ γ ) и 

012C  (для электродов с раскрывом ′ ′−γ γ0 0[ ; ]j j ) и 

динамические составляющие 11C∼  (для элек-
тродов с раскрывом 0 0[ ; ]j j−γ γ ) и 12C∼  (для 

электродов с раскрывом ′ ′−γ γ0 0[ ; ]j j ) определя-

ются соотношениями: 

 

= ε γ

′= ε γ

= ⋅ γ ×

 γ × +   γ 
′= ⋅ γ ×

′ γ × +   ′γ 

∑

∑

011 33 Н11 0

012 33 Н12 0

11 31 0

0( ) ( )

0

12 31 0

0( ) ( )

0

2 ;

2 ;

2

sin( )
;

2

sin( )
.

jS
j

j

jS
j

j

j

jj j
n n

jn

j

jj j
n n

jn

R
C U

h

R
C U

h

C e

n
inU W

n

C e

n
inU W

n

∼

�

�

∼

 (25) 

При этом общее реактивное сопротивление  
Σ= ω = ω + ω0c p pX C C C∼ , где p  – порядковый 

номер электрода. 

Отметим, что фактически, работа преобра-
зователя может быть описана с помощью нуле-
вой и нечетных гармоник, что объясняется ви-
дом электродирования и способом включения 
электродов [12]. 

Представляется полезным перейти к ситуа-
ции полного электродирования поверхности 
преобразователя. Для такого случая, изменение 

(0)
,r jE  по угловой координате не происходит, 

следовательно, член 
∂

∂ϕ

(0)
,r j

j

E
 первого уравнения 

системы уравнений движения оболочки [2] ста-
новится равным нулю. Функции включения ис-
чезают, оболочка совершает только радиаль-
ные колебания (что соответствует реализации 
лишь нулевой моды) и выражения (20)–(25) су-
щественно упрощаются. Так, с учетом равенст-
ва нулю тангенциальной составляющей пере-
мещений ( =( ) 0j

nU ), можно записать: 
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а давление, создаваемое таким цилиндриче-
ским источником нулевого порядка ( )0p r , опре-
делится как: 
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Выражения (26)–(30) совпадают с выраже-
ниями, приведенными в работе [2], и могут быть 
использованы для оценки динамических харак-
теристик указанного источника с полностью 
электродированною поверхностью. При этом Uγ  

может быть либо задано (если нет необходимо-
сти учета длинной линии), либо определено с 
использованием группы уравнений (6)–(10). 
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Как следует из выражения (30), динамическая 
составляющая электрической емкости преобразо-
вателя ∼дC C∆ =  определяется лишь радиальной 

составляющей колебаний оболочки ( )
0

jW . 

Выводы 

В результате решения задачи об излучении 
акустических волн круговым цилиндрическим 
пьезокерамическим преобразователем с раз-
резными электродами в электроупругой поста-
новке найден алгоритм позволяющий аналити-
чески определить динамические характеристики 
указанного источника звука, а именно: 
− акустическое давление в произвольной точ-

ке поля; 
− колебательные скорости в среде и на по-

верхности источника; 
− импедансные характеристики; 
− токи возбуждения преобразователя. 

Алгоритм также учитывает возможные осо-
бенности возбуждения преобразователя, кото-
рые заключаются в использовании протяжной 
электрической линии (генератор-преобразова-
тель), а также отличий в условиях согласования 
указанной двухэлектродной системы с задаю-
щим устройством. 

Путем перехода к преобразователю с пол-
ностью электродированной поверхностью пока-
зано хорошее совпадение с имеющимися ре-
зультатами и реализована возможность упро-
щения ситуации возбуждения преобразователя. 
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