Застосування гідротермально вирощених нанострижнів ZnO для електрохімічних біосенсорів
Основний зміст сторінки статті
Анотація
Нанострижні ZnO використовувалися на робочих електродах Au біосенсорів для покращення характеристик біосенсора. Нанострижні ZnO, вирощені на робочих електродах, використовувалися для виготовлення не лише датчиків глюкози, але й електрохімічних імуносенсорів для виявлення Legionella pneumophilia. Чутливість цих біосенсорів була значно підвищена порівняно з типовими електрохімічними біосенсорами на основі Au робочого електрода
Блок інформації про статтю
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).
Посилання
J. Liu, “Carbon-decorated ZnO nanowire array: A novel platform for direct electrochemistry of enzymes and biosensing applications”, Electrochemistry Communications, vol. 11, no. 1, pp. 202–205, Jan. 2009. DOI:10.1016/j.elecom.2008.11.009
L. C. Clark and C. Lyons, “ELECTRODE SYSTEMS FOR CONTINUOUS MONITORING IN CARDIOVASCULAR SURGERY”, Annals of the New York Academy of Sciences, vol. 102, no. 1, pp. 29–45, Dec. 2006. DOI:10.1111/j.1749-6632.1962.tb13623.x
C. Li, “A novel amperometric biosensor based on NiO hollow nanospheres for biosensing glucose”, Talanta, vol. 77, no. 1, pp. 455–459, Oct. 2008. DOI: 10.1016/j.talanta.2008.06.048
S. Cherevko and C.-H. Chung, “The porous CuO electrode fabricated by hydrogen bubble evolution and its application to highly sensitive non-enzymatic glucose detection”, Talanta, vol. 80, no. 3, pp. 1371–1377, Jan. 2010. DOI: 10.1016/j.talanta.2009.09.038
A. UMAR, M. RAHMAN, A. ALHAJRY, and Y. HAHN, “Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures”, Talanta, vol. 78, no. 1, pp. 284–289, Apr. 2009. DOI:10.1016/j.talanta.2008.11.018
Z. Li, R. Yang, M. Yu, F. Bai, C. Li, and Z. L. Wang, “Cellular Level Biocompatibility and Biosafety of ZnO Nanowires”, vol. 112, no. 51, pp. 20114–20117, Nov. 2008. DOI: 10.1021/jp808878p
S. A. Kumar, H.-W. Cheng, S.-M. Chen, and S.-F. Wang, “Preparation and characterization of copper nanoparticles/zinc oxide composite modified electrode and its application to glucose sensing”, Materials Science and Engineering: C, vol. 30, no. 1, pp. 86–91, Jan. 2010. DOI:10.1016/j.msec.2009.09.001
S. Saha, S. K. Arya, S. Singh, K. Sreenivas, B. Malhotra, and V. Gupta, “Zinc oxide–potassium ferricyanide composite thin film matrix for biosensing applications”, Analytica Chimica Acta, vol. 653, no. 2, pp. 212–216, Oct. 2009. DOI:10.1016/j.aca.2009.09.002
L. E. Greene, “Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays”, Angewandte Chemie International Edition, vol. 42, no. 26, pp. 3031–3034, Jul. 2003. DOI:10.1002/anie.200351461
Y. Tao, M. Fu, A. Zhao, D. He, and Y. Wang, “The effect of seed layer on morphology of ZnO nanorod arrays grown by hydrothermal method”, Journal of Alloys and Compounds, vol. 489, no. 1, pp. 99–102, Jan. 2010. DOI: 10.1016/j.jallcom.2009.09.020
B. Postels, “Selective growth of ZnO nanorods in aqueous solution”, Superlattices and Microstructures, vol. 42, no. 1-6, pp. 425–430, Jul. 2007. DOI: 10.1016/j.spmi.2007.04.045
J. Wang, “Electrochemical Glucose Biosensors”, Chemical Reviews, vol. 108, no. 2, pp. 814–825, Dec. 2007 DOI: 10.1021/cr068123a
Y. Yang, H. Yang, M. Yang, Y. liu, G. Shen, and R. Yu, “Amperometric glucose biosensor based on a surface treated nanoporous ZrO2/Chitosan composite film as immobilization matrix”, Analytica Chimica Acta, vol. 525, no. 2, pp. 213–220, Nov. 2004. DOI: 10.1016/j.aca.2004.07.071
J. Lin, C. He, L. Zhang, and S. Zhang, “Sensitive amperometric immunosensor for α-fetoprotein based on carbon nanotube/gold nanoparticle doped chitosan film”, Analytical Biochemistry, vol. 384, no. 1, pp. 130–135, Jan. 2009. DOI: 10.1016/j.ab.2008.09.033
X. You, J. Park, J.- hoon Choi, and J. J. Pak, “Thermo-electrochemical selective growth of ZnO nanorods on any noble metal electrodes”, Superlattices and Microstructures, vol. 48, no. 4, pp. 365–372, Oct. 2010. DOI: 10.1016/j.spmi.2010.07.008
B. Lu, E. I. Iwuoha, M. R. Smyth, and R. O’Kennedy, “Development of an ‘electrically wired’ amperometric immunosensor for the determination of biotin based on a non-diffusional redox osmium polymer film containing an antibody to the enzyme label horseradish peroxidase”, Analytica Chimica Acta, vol. 345, no. 1-3, pp. 59–66, Jun. 1997. DOI: 10.1016/S0003-2670(97)00083-4
D. Du, X. Xu, S. Wang, and A. Zhang, “Reagentless amperometric carbohydrate antigen 19-9 immunosensor based on direct electrochemistry of immobilized horseradish peroxidase”, Talanta, vol. 71, no. 3, pp. 1257–1262, Feb. 2007. DOI: 10.1016/j.talanta.2006.06.028