Просторова виборність багатомодових електропружних циліндричних систем
Основний зміст сторінки статті
Анотація
В рамках методу наскрізного завдання визначено перспективний напрямок досліджень просторових властивостей приймально-випромінюючих антенних систем на основі багатомодових циліндричних перетворювачів, представлених електропружними круговими циліндричними оболонками, зануреними в ідеальну рідину. При цьому забезпечується можливість видозміни характеристик спрямованості одиночних перетворювачів та антен, побудованих на їх основі, у широкому частотному діапазоні як із застосуванням хвильових методів, так і шляхом реалізації властивостей помірної надспрямованості зазначених перетворювачів та антен
Блок інформації про статтю
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).
Посилання
M. Smaryshev, The direction of the hydraulicstatic antennas, Leningrad: Shipbuilding, 1973, p. 270.
M. Smaryshev and Y. Dobrovolsky, Directional Calculation Handbookproperties of hydroacoustic antennas, Leningrad: Shipbuilding, 1984, p. 304.
G. Gabidulin, A. Tyurin, and V. Nesterenko, Antenna sonar devicesresources and their elements, Leningrad: VMA, 1982, p. 364.
A. Evtyutov and V. Mitko, Engineeringcalculations in hydroacoustics, Leningrad: Shipbuilding, 1988, p. 340.
V. Domarkas and E. Piletskas, Ultrasound echoscopy, Leningrad: Mechanical engineering, 1988, p. 340.
L. Orlov and A. Shabrov, Hydroacousticfishing fleet equipment, Leningrad: Shipbuilding, 1987, p. 222.
G. Sverdlin, Hydroacoustic transformationscallers and antennas, Leningrad: Shipbuilding, 1988, p. 200.
G. Sverdlin, Applied hydroacoustics, Leningrad: Shipbuilding, 1990, p. 320.
E. Skuchik, Fundamentals of Acoustics, Moscow: Mir, 1976.
E. Shenderov, Wave problems of hydroacoustics, Leningrad: Shipbuilding, 1972, p. 352.
L. Lependin, Acoustics, Moscow: Vysshaya shkola, 1978, p. 448.
V. Grinchenko and I. Vovk, Wave problemsscattering of sound on elastic shells, Kyiv: Naukova Dumka, 1986, p. 240.
A. Leiko, Y. Shamarin, and V. Tkachenko, Underwater electroacoustic equipmentand devices: In 2 vols, vol. 1. Kyiv: GKPPU GNII GP, 2000, p. 320.
V. Gordienko, V. Ilyichev, and L. Zakharov, Vector-phase methods in acoustics, Moscow: science, 1989, p. 220.
G. Skrebnev, “Hydroacoustic receiverspressure gradient and combinedreceivers”, Shipbuilding abroad, no. 2, pp. 77–79, Jan. 1984.
R. Hansen, Scanning antenna systems Microwave, Moscow: Sov. radio, 1966, p. 536.
G. Eisenberg, Ultrashort antennaswaves, Moscow: Svyaz, 1967, p. 348.
Pistolkors A.A., Antennas, Moscow: Svyazizdat, 1947, p. 480.
R. Balyan, E. Batanogov, and A. Bogorodsky, Terminological dictionary - reference bookon hydroacoustics, Leningrad: Sudostroyeniye, 1989, p. 368.
Y. Mazora, E. Machuskoho, and V. Pravdy, Radio engineering: Encyclopedic educationalreference book: Education manual, Kyiv: Vyshcha shkola, 1999, p. 838.
Y. Feld and L. Barakh, “Modern state of the theory of antenna synthesis”, Radiotehnika ielectronics, no. 2, pp. 187–205, Jan. 1968.
A. Pistolkors, “Applying functionsMathieu to calculate the current distribution inantenna according to a given radiation pattern”, Reports of the ANSSSR, vol. XXXIX, no. 5, pp. 121–128, Jan. 1958.
Y. Khurgin and V. Yakovlev, Theory methodsentire functions in radiophysics, communication theoryzi and optics, Moscow: GIFML, 1962, p. 220.
E. N. Gilbert and S. P. Morgan, “Optimum Design of Directive Antenna Arrays Subject to Random Variations”, Bell System Technical Journal, vol. 34, no. 3, pp. 637–663, May 1955 DOI:10.1002/j.1538-7305.1955.tb01488.x
D. Tucker, “he signal/noise performance ofelectro-acoustic strip arrays”, Acoustica, vol. 8, no. 1, pp. 512–515, Jan. 1958.
F. Furduev, OGIZ State Publishing House of Technical and Theoretical Literature, Moscow; Leningrad, 1948, p. 515.
M. Sapozhkov, Electroacoustics, Moscow: Communication, 1978, p. 272.
V. Mayatsky, “Overdirection optimizationlenny elements used in the compositionarray antennas”, Proceedings of the enterpriseR-6292.1967, no. 1, p. 17–33
V. Mayatsky, “On the synthesis of superdirectedantennas with special radiation patterns”, Questions of special hydroacoustics, no. 4, pp. 31–39, Jan. 1967.
G. Skrebnev, Combined hydroacoustic successors, St. Petersburg: Elmore, 1997, p. 200.
V. Gordienko, Vector-phase methodsin acoustics, Moscow: Fizmatlit, 2007, p. 480.
V.V. Bogorodsky, E.A. Zubarev,E.A. Korepin, V.I. Yakushev, Underwater electroacoustic transducers, Leningrad: Shipbuilding, 1983, p. 243.
P. S.I., Piezoceramic transducers. Measurement methods and calculation of parameters, Leningrad: Shipbuilding, 1984, p. 256.
V. Didkovsky, O. Leiko, and V. Savin, Electroacoustic poisoceramic transformations (design, design, construction), Kirovograd: “Imex-LTD”, 2006, p. 448.
Spatial Research Report characteristics of devices 37–3, 27–3: Report on Research and development work “Purv”, stage 1 / NPO “Slavutich”, Ts172–E175.21, Kyiv, 1991, 237
Report on the results of preliminary design of devices 27–3, 38–3, 28–3: Report on development work “Novella-V”, Draft design / NPO “Slavutich”, Ts204-E198.05. Kyiv, 1991, 214
Report on research into the main design solutions of devices 37–3, 27–3: Report about R&D “Association”, stage 1 / NPO “Slavutich”, Ts172–E175.21, Kyiv, 1991, 237
V. Grinchenko and A. Leiko, “Sound emissionsystems of interacting piezoceramic shells”, in Dokl. IV All-Unionsymp. in physics of acoustic-hydrodynamic phenomena and optoacoustics, pp. 83–87.
V. Boriseiko, V. Grinchenko, and A. Ulitko, “Electroelasticity relations for cylindersric shells of rotation”, Prikladnaya mekhanika, vol. 12, no. 2, pp. 26–23, Jan. 1976.
V. Grinchenko and I. Senchenko, “Radiationsound by partially shielded piezoceramic shells”, AppliedMechanics, vol. 18, no. 2, pp. 15–21,1982.
A. Klimov and A. Leiko, “On the influence of the interaction of shielded cylindricalconverters on their sound field characteristics in the near zone of flat antennas”, Shipbuilding issues. Series: Special hydroacoustics, no. 37, pp. 55–63, 1981.
A. Klimov and A. Leiko, in Diffraction flatsound wave on a resonant cylindrical transducer, partially covered with a sound-reflecting layer of the finalthickness, pp. 33–36.
V. Glazanov and V. Glazanov, Shielding of hydroacoustic antennas, Leningrad: Shipbuilding, 1986, p. 148.
http://www.avrora-elma.ru/products.html
http://www.kmt.kiev.ua/products/avrora-elma
B. Aronov and B. Aronov, Electromechanical transducers made of piezoelectric ceramics, Leningrad: Energoatomizdat, 1990, p. 271.
G. Skrebnev, Combined hydroacoustic receivers, St. Petersburg: Elmore, 1997, p. 200.
A. Leiko., Y. Shamarin, and V. Tkachenko, Acoustic antenna technology. Manufacturing methods using electrophysical processing techniques, vol. 2. Kyiv: GKPPU GNII GP, 2000, p. 256.
V. Grinchenko, I. Vovk, and V. Matsipura, Basicvi acoustics, Kiev: Naukova Dumka, 2007, p. 640.
A. Babaev, A. Leiko, and V. Savin, “Acousticmechanical and mechanical fields of a radially polarized cylindrical vibrator atpulsed electrical excitation”, Acoust. magazine, vol. 35, no. 2, pp. 211–217, 1989.
I. Senchenko, “Sound dispersion by piezoceramic cylindrical shellnear a rigid surface”, Appl. Mechanics, vol. 20, no. 7, pp. 111–114, Jan. 1984.
A. Babaev, L. But, and V. Savin, “Unsteady vibrations of a thin-walled cylindrical piezovibrator in a liquid under non-axisymmetric electrical excitation”, App. Mechanics, vol. 26, pp. 59–67,1990.
V. Kubenko and A. Babaev, “Influence of the cable tract on the operation of a cylindrical piezoelectric transducer in non-stationary modes”, Appl. mechanics, vol. 33, no. 11, pp. 46–62, 1997.
A. Leiko, V. Savin, and V. Tkachenko, “Interaction of a plane acoustic wave withcylindrical lattice consisting ofpiezoceramic cylindrical transducers”, Acoustic Bulletin, vol. 2, no. 2, pp. 64–72, 1999.
O. Korzhik and O. Leiko, “Interaction of a flat acoustic coil with a linear array of electric cylindrical transducers”, Sciencesnews of NTUU "KPI", no. 4, pp. 106–114, Jan. 2001.
A. Leiko, V. Savin, V. Tkachenko, and Y. Shamarin, “Regularities of interaction of a plane acoustic wave with a cylindrical lattice consisting of piezoceramic cylindrical transducers”, Acoustic Bulletin, vol. 3, no. 1, pp. 51–60, 2000.
O. Korzhik and O. Leiko, “Insertion of the cable path when disconnecting sound signalswith systems of rich-mode piezoceramic cylindrical transformers”, Electronics and Communications, vol. 38, no. 3, pp. 51–62, 2007.
A. Korzhik and Y. Soltanovsky, “Radiationsound waves by a sectioned cylindrical piezoelectric transducer connected to a long line”, Electronics andconnection, vol. 53, no. 6, pp. 41–47, 2009.
A. Korzhik and M. Lesechko, “Radiationsound waves by a sectioned systemcylindrical converters connected to a long line”, Electronicsand communication, vol. 54, no. 1, pp. 54–59, 2010.
V. Savin and I. Morgun, “Conversion of acoustic pulses into electrical pulses by a spherical piezoceramic shell”, Electronics and Communications, vol. 35, no. 6, pp. 36–42, Jan. 2006.
I. Morgun, “Radiation of acoustic pulses by a spherical thin-walled piezoelectric transducer with split electrodes”, Electronics and Communications, vol. 38, no. 3, pp. 43–48, 2007.
I. Morgun, “The action of a plane non-stationary pressure wave on a sphericalpiezoceramic transducer with internal screen”, Electronics and communications, no. 1, pp. 62–69, 2007.
O. Korzhik, “On the features of electromechanical transformations in receiving piezoceramic transducers with split electrodes”, Electronics and Communications, vol. 55, no. 2, pp. 224–230, 2010.
O. Korzhik and O. Leiko, “Formation of the directivity characteristics of a single primary electrically cylindrical converter with separate electrodes”, Science NewsNTUU "KPI", no. 1, pp. 50–55, 2005.
O. Korzhik and O. Leiko, “Formation of the directivity characteristics of an antenna consistingof two electroelastic elements”, Electronics and Communications, no. 1, pp. 45–53, 2009.
O. Korzhik and O. Leiko, “Further investigation of the acoustic characteristics of a single poisoceramic cylindrical valvein case of unrelated tasks, I will accept them in a thorough mannerstatements”, Naukovi visti NTUU “KPI”, no. 5, pp. 105–113, Jan. 2002.
O. Korzhik and O. Leiko, “Before feeding the diffraction of a flat acoustic coil on an electric cylindrical receiverre-creators”, Naukovi visti NTUU “KPI”, no. 6, pp. 83–89, 2004.
A. Korzhik, “Application of the ‘end-to-end’ methodtasks" to the study of amplitude-frequency dependences of the characteristics of the acoustic field of the receiving cylindricalpiezoceramic transducer withsplit electrodes”, Electronics andconnection, vol. 56, no. 3, pp. 160–166, 2010.
O. Korzhik, “Application of the ‘end-to-end’ methodtasks" to the study of amplitude-frequency dependences of the characteristics of the mechanical field of a receiving cylindrical piezoceramic transducer with split electrodes”, Electronics and Communications, vol. 57, no. 4, pp. 155–159, 2010.
O. Korzhik, “Amplitude and phase frequency characteristics of electrical voltages on the loads of the electrodes of piezoceramic cylindrical sound receivers atvarious types of electrodes under conditions of connectivity”, Electronics and Communications, vol. 58, no. 5, pp. 192–196, 2010.