НВЧ газорозрядний світильник на парах сірки
Основний зміст сторінки статті
Анотація
Проведені систематизація та аналіз даних щодо газоразрядних (плазмових) НВЧ світильників, порівняння існуючих типів освітлювальних пристроїв із газоразрядними НВЧ світильниками, доведено доцільність застосування саме цих типів світильників у відповідних умовах, також вказані переваги та перспективи досліджень. Обґрунтовано вибір плазмоутворювального світного середовища – сірки та розроблено пропозицію щодо вибору елементної бази для побудови НВЧ газоразрядних світильників. Визначено напрямки подальших досліджень і розробок у даному напрямку.
Бібл. 10, рис. 3, табл. 2.
Блок інформації про статтю
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).
Посилання
Rokhlin, H. (2006). Enquiry volume in lighting engineering. Ed. by Aizenberg Yu. Moskva. Znak. P. 972 (Rus).
Plasma illuminating lamp: ecological compatibility and continuous spectrum. (2011). www.magazine-svet.ru/review/63804 (Rus).
Zhidkov, R. A, Malyshev, V. V. (2013). Plasma irradiator for growth of green planting in hothouse. Herald VIESH. Vol. 1(10), pp. 45-47 (Rus).
Alexandrova, O. Yu. Bondarenko, S. V. Gutsayt, E. M. Zhidkov, R. A. (2013). Plasma lighting devices based on microwave discharge. Technologies of information-oriented society. Vol. 9, pp. 9-11 (Rus).
Zhidkov, R. A. (2103). Irradiator with sulfur lamp for crop production. All-Russian scientific conference “Microwave electronics issues”. Moskva, pp. 65-67 (Rus).
Sulfur lamp. Promissory commencement and... not predictable future? 1 part. Some history and about structure of the lamp, www.russianelectronics.ru:808/leader-r/review/2195/doc/56392 (Rus).
Luminous flux of typical light sources, www.dpva.info/Guide/GuidePhysics/LightAndColor/LightFlowEfficiency (Rus).
Zhidkov, R. A. (2008). Chamber, immersed and antenna-irradiating germicide devices combined ac-tion microwave-ultraviolet radiation an ozone. High-voltage vacuum-plasma electronics. Collected pa-pers VEI. Moskva, pp. 216-220 (Rus).
Volpian, O. D. Kuzmichev, A. I. (2012). Negative wave refraction. Introduction into physics and tech-nology of electromagnetic materials. Kiev, Avers. P. 360 (Rus).
Microwave transistors, http://www.ru.nxp.com/parametrics/16142/#/p=1,s=0, f=c54c27:1800;3100--c74923:250;450--cb6e65. Дата обращения: 30.09.15