Acoustoelectronic transducer of angular velocity

Main Article Content

Mykola Fedorovych Zhovnir

Abstract

The comparative characteristics of angular velocity transducer of object is carried out. It includes the comparison of direct and alternating current tachogenerators, photoelectric transducers, fiber optic transducers based on the Sagnac effect, magnetic and electromagnetic transducers using the Hall effect.

The method for measuring the angular velocity of the object using the Doppler effect propagating in a circular piezoelectric waveguide of surface acoustic waves (SAW) received by a SAW receiver moving in electric field is proposed and theoretically grounded. 

The functional diagram of the acousto-electronic angular velocity transducer that can contain a circular waveguide based on the piezoelectric film zinc oxide (aluminum nitride), a topographic waveguide based on piezoelectric ceramics or a slit waveguide based on the same materials is carried out. A circular SAW receiver moves above circular piezoelectric waveguide in the electric field. The SAW receiver’s distributed construction allows receiving signal with compensation of errors arising as a result of frontal and radial beats of transducer relative to the circular waveguide.

The mathematical model of the acousto-electronic angular velocity transducer allows to determine the amplitude-frequency and phase-frequency characteristics depending on the SAW-module construction parameters and set oscillator electrical parameters.

An estimation of transducer potential metrological parameters using Doppler effect propagating SAW in a circular waveguide demonstrates the advantages over traditional transducers.

It is shown that at a set oscillator frequency of 30 MHz and circular piezoelectric waveguide radius of 10 mm, the potential resolution of acousto-electronic velocity transducer is less than 1 rpm in the dynamic range up to 30,000 rpm and more.

Signal phase gain measurement of the control interdigital transducer of the surface acoustic waves allows taking into account the temperature influence on the measurement error.

The theoretical interrelation and the results of numerical calculation allow substantiating the structural and electrical parameters depending on the set metrological characteristics of angular velocity transducer.

The proposed acousto-electronic angular velocity converter can be applied in high-precision information measuring complexes for angular displacement, speed and acceleration measurement.

Ref. 24, fig. 4.

Article Details

How to Cite
Zhovnir, M. F. (2017). Acoustoelectronic transducer of angular velocity. Electronics and Communications, 22(4), 44–50. https://doi.org/10.20535/2312-1807.2017.22.4.103976
Section
Electronic systems
Author Biography

Mykola Fedorovych Zhovnir, National technical university of Ukraine "Igor Sikorsky Kyiv polytechnic institute"

Faculty of electronics

References

V. V. Krivenkov, Avtomaticheskiy kontrol i poverka preobrazovateley uglovyih i lineynyih velichin [Automatic control and verification of transducers of angular and linear quantities], Leningrad: Mashynostroenye, 1986, p. 247.

V. G. Domrachev; V. R. Matveevskiy; Yu. S. Smirnov, Shemotehnika tsifrovyih preobrazovateley peremescheniy: Spravochnoe posobie [Circuitry of digital displacement transducers: A Guidebook], Moscow: Energoatomizdat, 1987, p. 392.

M. Y. Yukish; V. V. Kuharchuk; Y. Y. BIlInskiy, Optiko-elektronni zasobi kontrolyu parametriv obertalnogo ruhu na osnovi metodu prostorovoyi modulyatsiyi [Optoelectronic devices for controlling the parameters of rotational motion based on the method of spatial modulation], Vinnitsa: VNTU, 2009, p. 138.

P. F. Polyakov; V. A. Horunzhiy; V. P. Polyakov, Akustoelektronika. Fiziko-tehnologicheskie osnovyi i primenenie: Sprav. posobie: V 2 t. [Acoustoelectronics. Physical and technological basis and application: Ref. Allowance: 2 t.], vol. 1, Kharkiv: "SMIT company" ltd, 2007, p. 552.

M. F. Zhovnir; M. G. Chernyak; D. V. Chernenko; L. M. Sheremet, ««VimIryuvalnI peretvoryuvachI fIzichnih velichin na poverhnevih akustichnih hvilyah [Measuring transducers of physical quantities on surface acoustic waves],» Electronics and Communications, vol. 16, no. 1 (60), pp. 153-157, 2011.

Y. I. Lepih, «Datchik davleniya s tenzochuvstvitelnyim preobrazovatelem na poverhnostnyih akusticheskih volnah [Pressure sensor with strain-sensitive transducer on surface acoustic waves],» Tekhnolohyya y konstruyrovanye v elektronnoy aparature, no. 3, pp. 53-54, 2004.

A. Zbrutsky; N. Chernyak; G. Skripkovsky, "Creation of low cost linear accelerometers for navigation and control systems," in Symposium Gyro Technology, 2005.

O. M. Bondarenko; O. V. Kaznadiy, «GIroskopichni efekti v pasivnih mikroelektronnih datchikah kutovoyi shvidkosti [Gyroscopic effects in passive microelectronic angular velocity sensors],» Datchyky y systemy, no. 6, pp. 59-65, 2001.

V. Kalinin; R. Lohr; A. Leigh, "Development of a calibration procedure for contactless torque and temperature sensors based on SAW resonators," in IEEE Ultrasonics Symposium, 2008. DOI: 10.1109/ultsym.2008.0459

M. F. Hribsek; D. V. Tosic; M. R. Radosavljevic, "Surface Acoustic Wave Sensors in Mechanical Engineering," FME Transactions, no. 38, pp. 11-18, 2010.

E. Mackensen; L. Reindl, "Wireless Passive SAW Identification Marks and Sensors," Smart Sensors and MEMS, no. 181, pp. 155-202, 2004. DOI: 10.1007/978-1-4020-2929-5_5

R. Matsuzaki; A. Todoroki, "Wireless Monitoring of Automobile Tires for Intelligent Tires," MDPI − Sensors, no. 8, p. 8123, 2008. DOI: 10.3390/s8128123

R. Fachberger; A. Erlacher, "Monitoring of the temperature inside a lining of a metallurgical vessel using a SAW temperature sensor," Procedia Chemistry, no. 1 (1), pp. 1239-1242, 2009. DOI: 10.1016/j.proche.2009.07.309

O. Bogdan; A. Orlov; O. Petrischev; V. Ulianova, "ZnO Nanostrctures as Sensing Element of Acoustic Wave Sensor," Eastern-European Journal of Enterprise Technologies, no. 6/12 (60), pp. 16-22, 2012. URL: http://journals.uran.ua/eejet/article/view/6021/5417

L. Reindl, "Wireless Passive Sensors: Basic Principles and Performances," in IEEE SENSORS, 2008. DOI: 10.1109/icsens.2008.4716758

M. F. Zhovnir; O. M. Kuzmenko; S. I. Pokutnyi, "Radio SAW−Sensors for Physical Parameters Measurement," Journal of Applied Chemistry, no. 3 (1), pp. 7-13, 2015.

M. F. Zhovnir; O. O. Oliynik; L. D. Pisarenko, «Matematichni modeli sensoriv peremischen ta tisku na osnovi zburennya elektrichnogo polya poverhnevih akustichnih hvil [Mathematical models of displacement and pressure sensors based on the perturbation of the electric field of surface acoustic waves],» Journal of Nano-and Electronic Physics, vol. VIII, no. 1, pp. 01024-01025, 2016. DOI: 10.21272/jnep.8(1).01024

M. F. ZhovnIr; M. V. BItov; L. D. Pisarenko, «VimIryuvalnI peretvoryuvachI mIkroperemIschen ta tisku na poverhnevih akustichnih hvilyah [Measuring transducers of micro-displacements and pressure on surface acoustic waves],» Electronics and Communications, vol. 21, no. 4 (93), pp. 49-57, 2016. DOI: 10.20535/2312-1807.2016.21.4.81907

D. Chernenko; M. Zhovnir; O. Oliinyk; B. Tsyganok, «Wireless Passive Sensor Using Frequency Coded SAW Structures,» in 35th International Spring Seminar on Electronics Technology, 2012. DOI: 10.1109/isse.2012.6273174

M. F. Zhovnir, «Matematichna model pervinnogo peretvoryuvacha liniynih peremischen z ruhomim priymachem poverhnevih akustichnih hvil [Mathematical model of the primary transducer of linear displacements with a mobile receiver of surface acoustic waves],» Visnyk NTU «KhPI». Seriya: «Mekhaniko-tekhnolohichni systemy ta kompleksy», no. 7 (1179), pp. 48-57, 2016.

M. F. Zhovnir, «Matematichna model pervinnogo peretvoryuvacha kutovih peremischen z kiltsevim p’ezoelektrichnim hvilevodom poverhnevih akustichnih hvil [Mathematical model of the primary transducer of angular displacements with piezoelectric waveguide surface acoustic waves],» Visnyk NTU «KhPI». Seriya: «Mekhaniko-tekhnolohichni systemy ta kompleksy», no. 49 (1221), pp. 42-51, 2016.

M. F. Zhovnir, «Peretvoryuvach peremischen z vikoristannyam fazovih nabigan elektrichnogo polya poverhnevih akustichnih hvil [Transducer of displacements using phase surges of the electric field of surface acoustic waves],» Electronics and Communications, vol. 22, no. 1 (96), pp. 58-68, 2017. DOI: 10.20535/2312-1807.2017.22.1.90513

M. F. Zhovnir, L. D. Pisarenko, A. V. Ivaschuk, O. O. Oliynik, M. V. Bitov, T. E. Pleshka та E. S. Zakonov, «Datchik dlya vimiryuvannya kutovoyi shvidkosti ob’ektiv. Patent na korisnu model. [Sensor for measuring angular velocity of objects. Patent for utility model.]». Ukraine Patent 115968, 10 May 2017.

M. F. Zhovnir, «P’ezoelektrichnI plIvkoviI hvilevodi poverhnevih akustichnih hvil [Piezoelectric film waveguides of surface acoustic waves],» Journal of Nano-and Electronic Physics, vol. 8, no. 4 (1), pp. 04007-1-04007-7, 2016. DOI: 10.21272/jnep.8(4(1)).04007