Acoustoelectronic transducers with contactless sensitive elements

Main Article Content

Myroslav Valeriievych Bitov
Mykolai Fedorovych Zhovnir
Leonid Dmytrovych Pysarenko
Tatyana Ievgenevna Pleshka

Abstract

The classification of acousto-electronic transducers of physical quantities created using primary transducers of surface acoustic waves (SAW) is carried out. It is based on SAW phase velocity and acoustic length of the delay line (resonator) change as a result of beam or membrane acoustic line deformation; environmental impact on the surface of acoustic line (molecular weight and gas concentration, temperature, humidity); coefficient of SAW reflection from interdigital transducers connected with external sensing elements affected by temperature, humidity, electromagnetic radiation; SAW phase velocity at wave electric field perturbation by a membrane; acoustic length of the delay line while moving SAW receiver in the electric field that extends on the surface of piezoelectric acoustic line.

The proposed mathematical model of acousto-electronic transducer based on the use of phase velocity surface acoustic wave dispersion as a result of SAW electric field perturbation by a membrane allows to determine the requirements to the SAW-module structural and electric parameters depending on the set metrological parameters of the transducer. While using an acoustic line from niobium lithium YZ-cut at a frequency of 69.76 MHz experimentally obtained the conversion factor of micro-displacements equal to 11.7 ns/μm and pressure equal to 0.23 ns/mmHg. The proposed functional scheme allows to create highly sensitive transducers of micro-displacement, pressure, acceleration, hydro-acoustic signals on the basis of a universal secondary acousto-electronic transducer, while the construction of primary transducer (membrane) is determined by set conversion factor and dynamic range of the measured physical quantity.

The mathematical model of acousto-electronic transducer using the change of acoustic length of the delay line during the SAW receiver movement in the SAW electric field extended on the surface of piezoelectric acoustic line allows to determine the requirements to the SAW-module structural and electronic parameters depending on the metrological parameters of the transducer of liner displacement up to 200 mm and more, and angular displacement up to 360 degrees.

While using an acoustic line from niobium lithium YZ-cut at a frequency of 70 MHz experimentally obtained the conversion factor of linear displacement equal to 570 ns/μm and factor of angular displacement at a 20 mm radius of circular piezoelectric waveguide based on the structure zinc oxide-fused quarts equal to 57.8 ps/arcsec.

The proposed transducers using SAW electric field extended to piezoelectric structures can be applied both at stationary and radiometric wireless systems.

Ref. 21, fig.3.

Article Details

How to Cite
Bitov, M. V., Zhovnir, M. F., Pysarenko, L. D., & Pleshka, T. I. (2017). Acoustoelectronic transducers with contactless sensitive elements. Electronics and Communications, 22(3), 61–67. https://doi.org/10.20535/2312-1807.2017.22.3.104417
Section
Electronic systems
Author Biographies

Myroslav Valeriievych Bitov, National technical university of Ukraine "Igor Sikorsky Kyiv polytechnic institute"

Студент 5 курсу гр. ДЕ-61м ФЕЛ

Mykolai Fedorovych Zhovnir, National technical university of Ukraine "Igor Sikorsky Kyiv polytechnic institute"

Канд. техн. наук, с.н.с., доцент кафедри електронних приладів та пристроїв

Leonid Dmytrovych Pysarenko, National technical university of Ukraine "Igor Sikorsky Kyiv polytechnic institute"

Доктор технічних наук, професор, завідувач кафедри електронних приладів та пристроїв

Tatyana Ievgenevna Pleshka, National technical university of Ukraine "Igor Sikorsky Kyiv polytechnic institute"

Студентка 5 курсу гр. ДЕ-61м ФЕЛ

References

P. F. Polyakov; V. A. Horunzhiy; V. P. Polyakov, Akustoelektronika. Fiziko-tehnologicheskie osnovyi i primenenie: Sprav. posobie: V 2 t. 1 [Acoustoelectronics. Physical and technological basis and application: Ref. Allowance: 2 t.], vol. I, т. 1, Kharkiv: "SMIT company" ltd, 2007.

M. F. Zhovnir; M. G. Chernyak; D. V. Chernenko; L. M. Sheremet, «VimIriuvalnI peretvoriuvachI fIzychnykh velichyn na poverkhnevykh akustychnykh khvyliakh [Measuring transducers of physical quantities on surface acoustic waves],» Electronics and Communications, no. 16, № 1 (60), pp. 153-157, 2011.

Y. I. Lepih, «Datchik davleniya s tenzochuvstvitelnyim preobrazovatelem na poverhnostnyih akusticheskih volnah [Pressure sensor with strain-sensitive transducer on surface acoustic waves],» Tekhnolohyya y konstruyrovanye v elektronnoy aparature, no. 3, pp. 53-54, 2004.

O. Bogdan; A. Orlov; O. Petrischev; V. Ulianova, "ZnO Nanostrctures as Sensing Element of Acoustic Wave Sensor," Eastern-European Journal of Enterprise Technologies, no. 6/12 (60), pp. 16-22, 2010. URL: http://journals.uran.ua/eejet/article/view/6021/5417

M. F. Zhovnir; O. O. Oliynik; L. D. Pisarenko, «Matematychni modeli sensoriv peremishchen ta tysku na osnovi zburennia elektrychnogo polia poverhnevykh akustychnykh khvyl [Mathematical models of displacement and pressure sensors based on the perturbation of the electric field of surface acoustic waves],» Journal of Nano-and Electronic Physics, vol. VIII, no. 1, pp. 01024-01025, 2016. DOI: 10.21272/jnep.8(1).01024

M. F. ZhovnIr; M. V. BItov; L. D. Pisarenko, «VymIriuvalnI peretvoriuvachI mIkroperemIshchen ta tysku na poverkhnevykh akustychnykh hvyliakh [Measuring transducers of micro-displacements and pressure on surface acoustic waves],» Electronics and Communications, vol. 21, no. 4 (93), pp. 49-57, 2016. DOI: 10.20535/2312-1807.2016.21.4.81907

M. F. Zhovnir, «Matematychna model pervynnogo peretvoriuvacha liniinykh peremishchen z ruhomym priimachem poverhnevykh akustychnykh khvyl [Mathematical model of the primary transducer of linear displacements with a mobile receiver of surface acoustic waves],» Visnyk NTU «KhPI». Seriya: «Mekhaniko-tekhnolohichni systemy ta kompleksy», no. 7 (119), pp. 48-57, 2016.

M. F. Zhovnir, «Matematychna model pervynnoho peretvoriuvacha kutovykh peremishchen z kiltsevym pezoelektrychnym khvylevodom poverkhnevykh akustyvhnykh khvyl [Mathematical model of the primary transducer of angular displacements with piezoelectric waveguide surface acoustic waves],» Visnyk NTU «KhPI». Seriya: «Mekhaniko-tekhnolohichni systemy ta kompleksy», no. 49 (1221), pp. 42-51, 2016.

M. F. Zhovnir, «eretvoriuvach peremishchen z vykorystanniam fazovykh nabihan elektrychnoho polia poverkhnevykh akustychnykh khvyl [Transducer of displacements using phase surges of the electric field of surface acoustic waves],» Electronics and Communications, vol. 22, no. 1 (96), pp. 58-68, 2017. DOI: 10.20535/2312-1807.2017.22.1.90513

Y. I. Lepih, «Datchik ugla povorota generatornogo tipa s elementom na poverhnostnyih akusticheskih volnah [Sensor of generator-type rotation angle with element on surface acoustic waves],» Technology and design in electronic equipment, no. 3, pp. 24-25, 2009.

A. Zbrutsky; N. Chernyak; G. Skripkovsky, "Creation of low cost linear accelerometers for naviga-tion and control systems," in Symposium Gyro Technology, 2005.

O. M. Bondarenko; O. V. Kaznadiy, «Hyroskopichni efekty v pasyvnykh mikroelektronnykh datchykakh kutovoi shvydkosti [Gyroscopic effects in passive microelectronic angular velocity sensors],» Datchyky y systemy, no. 6, pp. 58-65, 2001.

V. Kalinin; R. Lohr; A. Leigh, "Development of a calibration procedure for contactless torque and temperature sensors based on SAW resonators," in IEEE Ultrasonics Symposium, 2008. DOI: 10.1109/ultsym.2008.0459

M. F. Hribsek; D. V. Tosic; M. R. Radosavljevic, "Surface Acoustic Wave Sensors in Mechanical Engineering," FME Transactions, no. 38, pp. 11-18, 2010.

R. Matsuzaki; A. Todoroki, "Wireless Monitoring of Automobile Tires for Intelligent Tires," MDPI − Sensors, no. 8, p. 8123, 2008. DOI: 10.3390/s8128123

R. Fachberger; A. Erlacher, "Monitoring of the temperature inside a lining of a metallurgical vessel using a SAW temperature sensor," Procedia Chemistry, no. 1 (1), pp. 1239-1242, 2009. DOI: 10.1016/j.proche.2009.07.309

L. Reindl, "Wireless Passive Sensors: Basic Principles and Performances," in IEEE SENSORS, 2008. DOI: 10.1109/icsens.2008.4716758

M. F. Zhovnir; O. M. Kuzmenko; S. I. Pokutnyi, "Radio SAW−Sensors for Physical Parameters Measurement," Journal of Applied Chemistry, no. 3 (1), pp. 7-13, 2015.

D. Chernenko; M. Zhovnir; O. Oliinyk; B. Tsyganok, «Wireless Passive Sensor Using Frequency Coded SAW Structures,» в 35th International Spring Seminar on Electronics Technology, 2012. DOI: 10.1109/isse.2012.6273174

D. Morgan, Ustroystva obrabotki signalov na poverhnostnyih akusticheskih volnah [Signal processing devices on surface acoustic waves], Moscow: Radio and Communications, 1990, p. 416.

S. D. Ponomarev; L. E. Andreeva, Raschet uprugih elementov mashin i priborov [Calculation of elastic elements of machines and devices], Moscow: Mashynostroenye, 1980, p. 326.