The resonance overvoltages in nonsinusoidal modes of extra high voltage transmission lines
Main Article Content
Abstract
Due to the rising role of overhead lines extra high voltage there is a need of application of modern electronic devices that allow controlling modes of bulk electricity system. Durable resonance overvoltage may cause damage of electrical power equipment. This kind of overvoltage is caused by properties of the network and can be eliminated by changing the ratio between the parameters of the network and its mode. Unlike switching overvoltage that exist centiseconds, resonance overvoltage not only occur unexpectedly, but they may go on for a long time until the automatic action or action of personnel will not change electrical schemes or operation modes. The resonance overvoltage are neglected when selecting insulation or parameters for high-voltage surge arrester as this protective measure is calculated to limit switching overvoltage, not to extinguish a long resonance process. Therefore, the probability and development of system accidents due to resonance overvoltage is significant. One of the main causes of equipment failure in the main electrical network is overvoltage. Overvoltage are the values which according to the technical requirements exceed the maximum value of normal operating voltage. The reason is that the relatively small insulation reserve provides for the equipment of the electricity grid because of its high cost for a given voltage. Generally, cost of power systems insulation is a significant factor in capital investment. The main source of distortion in extra high voltage networks is nonlinearity of volt-ampere characteristic of magnetic shunt in unloaded power autotransformer. This mode causes the conditions for the significant overvoltage on even harmonics. It should be noted that the processes of the second harmonic overvoltage are generally known, but their specific occurrence conditions depend on many factors of abnormal mode. That is why the aim of the article is developing measure for reduction and prevention of overvoltage in accordance with conditions for their existence. In investigations residual magnetization is neglected because capacitance between autotransformer and circuit breaker is large enough. In the article the features of the operation of SF6 switches that should be considered when introducing them to the power lines of 750 kV. The switching control unit Switchsync F236 is one of such devices which enables to connect and disconnect contacts of poles circuit breakers at required time. This function of Switchsync F236 can be used not only for interruption of short circuit. One of the objectives of application Switchsync F236 is prevention of resonance overvoltage occurrence at closing extra high voltage line on no-load autotransformer. The analysis of electromagnetic switching transients when operating a three-phase auto recloser with really existing power transmission lines has been implemented. The influence of initial conditions of electromagnetic transients based on simulation has been analyzed. Based on the research it is proposed to use suppression equipment components with aperiodic current line switches. The research of recommended exposure settings of the controlled switching device on duration of current aperiodical component has been done. Recommendations on the use pre-insertion resistors and switching units controlled have been proposed. The importance of application and prevention of resonance overvoltage caused research area which is presented in article.
Ref. 11, fig. 6.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
V. Kuznetsov, Y. Tugay and V. Kuchanskyy, «Doslidzhennia vplyvu transpozitsii linii elektroperedachi nadvisokoi naprugi na anormalni perenapruhi [Investigation of transposition EHV transmission lines on abnormal overvoltages],» Technical electrodynamics, № 6, p. 51–56, 2013. URL: http://techned.org.ua/2013_6/st11.pdf
I. Naumkin, M. Balabin, N. Lavrushenko and R. Naumkin, "Simulation of the 500 kV SF6 circuit breaker cutoff process during the unsuccessful three-phase autoreclosing," in International Conference on power systems Transients, Delft, The Netherlands, 2011. URL: http://www.ipstconf.org/papers/Proc_IPST2011/11IPST025.pdf
V. Kuchanskyy, «KriterIi vynyknennia rezonansnykh perenapruh v anormalnykh rezhymakh lInIi elektroperedach nadvysokoi napruhi [Criteria of resonance overvoltages occurrence in abnormal conditions of extra high voltage transmission lines],» Scientific works of Vinnitsa National Technical University, № 4, p. 51–54, 2016. URL: https://visnyk.vntu.edu.ua/index.php/visnyk/article/view/1948/1949
M. E. Zevallos and M. C. Tavares, "Single-Phase Auto-Recloser Studies: Influence of Transversal Parameters of a Transmission System on the Secondary Arc Current Reduction during SPAR," in International Conference on power systems Transients, Delft, The Netherlands, 2011. URL: http://www.ipstconf.org/papers/Proc_IPST2011/11IPST011.pdf
V. Kulik та S. Wisniewski, «KombInovanI modelI normalnih rezhimIv elektrichnih sistem z urahuvannyam osoblivostey dovgih lInIy elektroperedachI [Combined electric model normal mode systems with regard to extra-long power lines],» Scientific works of Vinnitsa National Technical University, № 1, pp. 1-7, 2012.
A. Ravluk and V. Stetsyk, "Modeling of switching processes of high voltage lines 750 kV," Journal of Lviv Polytechnic National University. Electrical power engineering and electromechanical systems, no. 840, pp. 102-107, 2016.
Y. Tugay, "The resonance overvoltages in EHV network," in 10th International Conference on Electrical Power Quality and Utilisation, Lodz, Poland, 2009. DOI: 10.1109/EPQU.2009.5318812
S. R. Atmuri, R. S. Thallam, D. W. Gerlach, T. G. Lundquist and D. A. Selin, "Neutral reactors on shunt compensated EHV lines," in International Conference of Transmission and Distribution, Chicago IL, USA, 1994. DOI: 10.1109/TDC.1994.328443
M. Nagpal, T. G. Martinich, A. Bimbhra and D. Sydor, "Damaging Open-Phase Overvoltage Disturbance on a Shunt-Compensated 500-kV Line Initiated by Unintended Trip," IEEE Transactions on Power Delivery, vol. 30, no. 1, pp. 412-419, February 2015. DOI: 10.1109/TPWRD.2014.2360144
I. Naumkin, «Crash when switching of gas insulated circuit breakers 500-1150 kV overhead line compensated,» Electricity, № 10, pp. 22-32, 2012.
I. Sadeghkhani, A. Ketabi and R. Feuillet, "New Approach to Harmonic Overvoltages Reduction during Transformer Energization via Controlled Switching," in 15th International Conference on Intelligent System Applications to Power Systems, Curitiba, Brazil, 2009. DOI: 10.1109/ISAP.2009.5352837