Detection of stresses induced by heat flux in a solid by using a photoelastic microscope
Main Article Content
Abstract
The aim of this paper is to present adventures of practical and effective modulation polarimetry method (MPM) applied to the plate sample of quartz glass for detection of its minute internal thermoelastic stresses induced by heat wave propagation. Described MPM allowed to make accurate measuring of birefringence that accompany the dynamics of thermoelasticity and made possible to calculate the value of stress distribution along and crosswise to the direction of heat flow at certain moments of time, as well as its dependence on time in defined heat flux coordinates. The main goal of this paper is not only the solution of inverse problems of nonstationary thermoelasticity that allowed obtaining spatio-temporal temperature functions by graphical integration of the experimental characteristics but researching the dynamics of the maximum curvature point of the temperature function T(t) that is a characteristic of the thermal front in the process of heat flow establishment. In addition, it is shown that due to the high detectability of MPM applied in photoelastic microscope became possible to observe the radiation component of the heat transfer process.
References 20, figures 5.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
Alyev T. M., Ter-Hachaturov A. A. (1991), “Yzmerytel'naja tehnyka: Ucheb. posobye dlja teh. Vuzov”. M., Vyssh. shk. P.383. (Rus).
Becchetti M., Flori R., Marsili M., Moretti M. (2010), “Comparison between Digital Image Correlation and Thermoelasticity for Strain Field Analysis” // AIP Conf. Proc. Vol.1253, pp. 233-240.
Becchetti M., Flori R., Marsili R., Rossi G. L. (2009), “Stress and strain measurements by image corre-lation and thermoelasticity” // Proc. of the SEM Annual Conference, pp. 1-6.
Bhushan Bharat, Fuchs Harald (Eds.) (2006), ‘‘Applied Scanning Probe Methods II. Scanning Probe Microscopy Techniques” // Berlin: Springer-Verlag Heidelberg, pp. 321-357.
Chadjuk V. O. (2012), „Optoelektronika: vid makro do nano. Generacija optychnogo vyprominjuvann-ja: navch. Posib. U 2 kn.” / V. O. Chadjuk. – K.: NTUU «KPI»,. -Kn. 2. P. 436. (Ukr).
Denbnovec'kyj S. V., Leshhyshyn O. V. (2011), Elektronni systemy: navch. Posib. – K. NTUU «KPI». P. 288. (Ukr).
Dulieu-Barton J. M., Stanley P. (1998), “Development and applications of thermoelastic stress ana-lisys”, J. of strain analisys Vol. 33. no. 2. pp. 93-104.
Fofanov Ya. A. (1991), “Threshold Sensitivity in Optical Measurements with Phase Modulation’’ Proc. SPIE (The Report of tenth Union Simp. and Seminar on High-Resolution Molecular Spectroscopy) ed L.N. Siniza. Vol. 1811, pp. 413-414.
Gilmour I. W., Trainor A., Haward R. N. (1978), “Calculation of the Grüneisen constant of glassy poly-mers from thermoelastic data”, J. of Polymer Science: Polymer Physics Edition. Vol. 16, pp. 1291-1295.
Green A. E. and Lindsay K. A. (Eds.) (1972), “Thermoelasticity’’ J. of elasticity Vol. 2, no. 1, pp. 1-7.
Harwood N., Cummings W. M. (Eds.) (1991), “Thermoelastic Stress Analysis” (Bristol: IOP Publishing Ltd.). P. 400.
Kasai M., Sawada T. (Eds.) (1990), “Photoacoustic and Photothermal Phenomena II” (Berlin: Springer Verlag) Vol. 62, pp. 33–36.
Kovalenko A. D. (1969), “Thermoelasticity” (Translated from the Russian by D. B. Macvean. With an appendix on Thermoelastic stability by J. B. Alblas). Groningen: Wolters-Noordhoff. P. 256.
Mackin T. J., Roberts M. C. (2000), “Evaluation of damage evolution in ceramic-matrix composites using thermoelastic stress analysis”, J. of the American-Ceramic-Society, Vol. 83, no. 2, pp. 337-343.
Oliinyk O., Tsyganok B., Serdega B., Matiash I. (2011), “Investigation of nonstationary thermo-photo-elastic effect using the polarization modulation of radiation” Proc. of the 34th Int. Spring Seminar on Electronics (IEEE Xplore), pp. 294-298.
O. Olijnyk O., Tsyganok B. A., B.K. Serdega. Pat. №74814 Ukrai'na “Sposib dlja fotopruzhnoi' mikroskopii' tverdyh til ta i'h struktur”; zajavnyk i pravovlasnyk NTUU «KPI». № u201205269; zajavl. 27.04.2012; opubl. 12.11.2012, Bjul. №21. (Ukr)
O. O. Olijnyk, B. A. Tsyganok, B.K. Serdega Pat. №78510 Ukrai'na, “Prystrij dlja fotopruzhnoi' mikroskopii' tverdyh til ta i'h struktur”; zajavnyk i pravovlasnyk NTUU «KPI». № u201209377; zajavl.31.07.2012; opubl. 25.03.2013, Bjul. № 6. (Ukr)
Serdega B. K. (2011), “Moduljacijna poljarymetrija”.K. Nauk. Dumka. P. 238 (Ukr)
Weber W. (1830), “Über die spezifische Wärme fester Körper insbesondere der Metalle Annalen der Physik und Chemie” Vol. 96, pp. 177-213.
Yao Nan, Wang Zhong Lin (Eds.) (2005), “Handbook of Microscopy for Nanotechnology”. NEW YORK: KLUWER ACADEMIC PUBLISHERS, pp. 183-205.