Energy losses in piezoceramic resonators and its influence on vibrations’ characteristics

Main Article Content

Velerii Leonidovych Karlash

Abstract

This paper is devoted to analyze of the modern achievements in energy loss problem for piezoceramic resonators. In parallel a new simple methodic of an experimental determination of energy losses and coupling coefficients is presented and author’s opinion why mechanical quality is different on resonance and anti-resonance is gave. The reason lies in “clamped” capacity and electromechanical coupling factor’s value. The better electromechanical coupling the stronger capacity “clamping” and the higher its influence on anti-resonant frequency and quality.

Reference 36, figures 4, tables 3.

Article Details

How to Cite
Karlash, V. L. (2014). Energy losses in piezoceramic resonators and its influence on vibrations’ characteristics. Electronics and Communications, 19(2), 82–93. https://doi.org/10.20535/2312-1807.2014.19.2.142210
Section
Acoustical devices and systems

References

Berlincour D.A., Curran D.R. and Jaffe H. (1964), «Piezoelectric and piezomagnetic materials and their function in transducers». In Physical acoustics, Vol.1. W. P. Mason ed. New York, Academic Press, pt. A. pp. 169 – 270.

Butterworth S. (1915), “On electrically maintained vibrations”. Proc. Phys. Soc. (London), Vol. 27, pp. 410 – 424.

Cady W.G. (1922), “Theory of longitudinal vibrations of viscous rodsy”. Phys. Rev., Vol. 19, no 1, pp. 1 – 6.

Dye D.E. (1926), “The piezoelectric quartz resonator and its equivalent circuit”. Proc. Phys. Soc. (Lon-don), Vol. 38, pp. 399 – 453.

Dyke Van S. (1925), “The electric network equivalent of piezoelectric resonators”. Phys. Rev., Vol. 25, p. 895(A).

Glozman I.A. (1972), “Pjezokeramika [Piezoceramics]”. Moscow, Energhiya. P.288. (Rus)

Holland R. (1967), “Representation of dielectric, elastic and piezoelectric losses by complex coeffi-cients”. IEEE Trans. SU., Vol. SU-14. pp.18 – 20.

“IRE Standards on Piezoelectric Crystals: Measurements of Piezoelectric Ceramics”, (1961). Proс. IRE. Vol. 49, pp. 1161 – 1169.

Jaffe B., Cook W.R. and Jaffe H. (1971), “Piezoelectric ceramics”. London, Academic Press:.

Kalashnikov A.M. and Stepuk Ya.V. (1962), “Bases of radio-engineering and radiolocation vibrating systems”, Moscow, Voyeniz, p. 368. (Rus)

Karlash V.L. (1984), “Influence of energy dissipation on amplitude-frequency characteristics of thin piezoceramic disk full conductivity”, Electrichestvo, no 4, pp. 59 – 61. (Rus)

Karlash V.L. (1984), “Energy dissipation at vibrations of thin piezoceramic circular plates”, Prikladnaya mechanika, Vol. 20, no 5. pp. 77 – 82. (Rus)

Karlash V.L. (2005), “Resonant electromechanical vibrations of piezoelectric plates”, Int. Appl. Mech., Vol. 41, no 7, pp. 709 – 747.

.Karlash V.L. (2006), “Longitudinal and lateral vibrations of a plate piezoceramic transformer”, U.J. Phys., Vol. 51, no 10, pp. 985 – 991.

Karlash V.L., (2009), “Particularities of amplitude-frequency characteristics of admittance of thin pie-zoceramic half-disk”, Int. Appl. Mech., Vol. 45, no10, pp. 647 – 653.

Karlash V.L. and Ulitko A.F. (1976), “Method of mechanic stress investigation in vibrating piezoceram-ic bodies”, Eelectrichestvo, no 11, pp. 82 – 83. (Rus)

.Karlash V.L. (2004), “Electroelastic vibrations and transformation ratio of a planar piezoceramic transformer”, J. Sound Vib., Vol. 277, pp. 353 – 367."

.Karlash V.L. (2005), “Longitudinal and lateral vibrations of a planar piezoceramic transformer”, Jpn. J. Appl. Phys., Vol. 44, no 4A, pp. 1852 – 1856.

Karlash V.L. (2007), “Planar electroelastic vibrations of piezoceramic rectangular plate and half-disk”, Int. Appl. Mech., Vol. 43, no 5, pp. 547 – 553.

Katz H.W. (1959), “Solid State Magnetic and Piezoelectric Devices”, New York, Willey.

Land C.E., Smith G.W and Westgate C.R. (1964), “The dependence of small-signal parameters of the ferroelectric ceramic resonators upon state of polarization”, IEEE Trans. Sonics and Ultrasonics, 1964. Vol. SU-11. - pp. 8 –19.

Mason W.P. (1940), “Location of hysteresis phenomena in Rochelle salt”, Phys. Rev., Vol. 58, pp. 744 – 756.

Martin G.E. (1965), “Dielectric, piezoelectric and elastic losses in longitudinally polarized segmented ceramic tubes”, U.S. Navy J. Underwater Acoustics, Vol. 15, pp. 329 – 332.

Mezheritsky V. (2005), “Electrical measurements of a high-frequency, high-capacitance piezoceramic resonator with resistive electrodes”, IEEE Trans UFFC, Vol. 52, no 8, pp. 1229 – 1238.

Mezheritsky A.V. (2002), “Quality factor of piezoceramics”, Ferroelectrics, Vol. 266, pp. 277 – 304.

Mezheritsky A.V. (2004), “Elastic, dielectric and piezoelectric losses in piezoceramics; how it works all together”, IEEE Trans UFFC, Vol. 51, no 6, pp. 695 – 797.

Quimby S.L. (1925), “On the experimental determination of the viscosity of vibrating solids”, Phys. Rev., Vol. 38, pp. 568 – 582.

.Shul’ga N. A. and Bolkisev A. M. (1990), “The Vibrations of Piezoelectric Bodies”, Kiev, Naukova dumka. (Rus)

Shul’ga M.О. and Karlash V.L (2008), “Resonant electromechanic vibrations of piezoelectric plates”, Kyiv, Naukova dumka, p. 272.(Ukr)

Smith J.G. (1976), “Iterative method for accurate determination of real and imaginary parts of materi-als coefficients of piezoelectric ceramics”, IEEE Trans. SU., Vol. SU-23, no 6, pp. 393 – 402.

Uchino K. and Hirose S. (2001), “Loss mechanisms in piezoelectrics: how to measure different losses separately”, IEEE Trans UFFC, Vol. 48, no1, pp. 307 – 321

Uchino K., Zheng J. H., Chen Y. H. (2006), “et al Loss mechanisms and high power piezoelectrics”, J. Mat. Sci, Vol. 41, pp 217 – 228.

Ural S.O., Tunodemi S., Zhuang Yu. and Uchino K., (2009), “Development of a high power piezoelec-tric Characterization system and its application for resonance/antiresonance mode characterization“, Jpn. J. Appl. Phys., Vol. 48 056509.

Rosen C.A. (1954), US Patent 439 992.

Voigt W. (1910), “Lehrbuch der kristallphysik”, Leipzig, B.G.Teubner.

Zherebtsov I.P. (1965), “Radio-engineering”, Moscow, Svyaz’, Sov. Radio, 656 p. (Rus)