Clinical Applications of Biosensors Based on Field-Effect Transistors with Carbon Nanotubes or Nanowires
Main Article Content
Abstract
In this paper we describe recent advances in the rapidly developing area of analyte detection using field-effect transistors (FETs) based on carbon nanotubes or nanowires. In this article behavior and advantages of one-dimensional nanomaterials for biosensing application is depicted. Among one-dimensional nanometer-scale materials, carbon nanotubes and nanowires offer unique electronic and mechanical properties that make them extremely attractive for the task of biosensing.
The structures and work principles of FET-biosensors based on carbon nanotubes/nanowires is discussed. Carbon nanotubes/silicon nanowire field-effect transistors have recently attracted great attention as promising tools in biosensor design because of their biocompatibility, size compatibility, ultrasensitivity, selectivity and label-free and real-time detection capabilities. In addition, interaction mechanisms between transducer elements of FET-biosensor (carbon nanotubes or nanowires) and target entities is also reviewed. Finally, applications of FET-type biosensors for measurement of different analytes is highlighted in this review. Proteins interaction, antibody–antigen reactions including prostate-specific antigen detection, DNA hybridization and enzymatic reactions involving glucose is shown.
Reference 36, figures 5.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
Allen, B. Carbon Nanotube Field-Effect-Transistor-Based Biosensors / B. L. Allen, P. D. Kichambare, A. Star // Advanced Materials. – 2007. – Vol. 19, June 2007. – P. 1439–1451.
Balavoine, B. Helical Crystallization of Proteins on Carbon Nanotubes: A First Step towards the Development of New Biosensors / F. Balavoine, P. Schultz, C. Richard, V. Mallouh, T.W. Ebbesen, C. Mioskowski // Angew. Chem. Int. Ed. – 1999. - Vol. 38, №13/14, P. 1912 - 1915.
Besteman, K. Enzyme-coated carbon nanotubes as single-molecule biosensors / K. Besteman, J.-O Lee, F.G.M. Wiertz, H.A. Heering, C. Dekker // Nano Letters. – 2003. – Vol. 3, №6. – P. 727–730.
Bradley, K. Charge Transfer from Ammonia Physisorbed on Nanotubes / K. Bradley, J.-C. P. Gabriel, M. Briman, A. Star, G. Grüner // Phys. Rev. Lett. – 2003. – Vol. 91, №21. – P. 218301.
Chen, K. Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation / Kuan-I Chen , Bor-Ran Li, Yit-Tsong Chen // Nano Today. – 2011. – Vol. 6, April 2011. – P. 131–154.
Chen, R.J. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors / R.J. Chen, S. Bangsaruntip, K.A. Drouvalakis, N.W. Kam, M.Shim, Y.M. Li, W. Kim, P.J. Utz, H.J. Dai // Proc. Natl. Acad. Sci. U. S. A. – 2003. – Vol. 100, №9. – P. 4984–4989.
Cohen-Karni, T. Graphene and nanowire transistors for cellular interfaces and electrical recording / T. Cohen-Karni, Q. Qing, Q. Li, Y. Fang, C.M. Lieber // Nano Lett. – 2010. – Vol. 10. – P. 1098–1102.
Cui, Y. Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species / Y. Cui, Q. Wei, H. Park, C.M. Lieber // Science. – 2001. – Vol. 293. – P. 1289–1292.
Curreli, M. Real-Time, Label-Free Detection of Biological Entities Using NW-Based FETs / M. Curreli, R. Zhang, F. N. Ishikawa, H.K. Chang, R.J. Cote, C. Zhou, M.E. Thompson // IEEE Transactions on nanotechnology. – 2008. – Vol. 7, №6. – P. 651–667.
Hahm, J. Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors / J. Hahm, C. M. Lieber // Nano Letters. – 2004. – Vol. 4, №1, P. 51–54.
Hecht, D.S. Bioinspired Detection of Light Using a Porphyrin-Sensitized Single-Wall Nanotube Field Effect Transistor / D.S. Hecht, R.J.A. Ramirez, M. Briman, E. Artukovic, K.S. Chichak, J.F. Stoddart, G. Grüner //Nano Lett. – 2006. – Vol. 6, №9. – P. 2031–2036.
Heller, D. Optical Detection of DNA Conformational Polymorphism on Single-Walled Carbon Nanotubes / D. Heller, E. Jeng, T. Yeung, B. Martinez, A. Moll, J. Gastala, M. Strano // Science. – 2006. - Vol. 311, №5760. - P. 508-511.
Heller, D. Single-Walled Carbon Nanotube Spectroscopy in Live Cells: Towards Long-Term Labels and Optical Sensors / D. Heller, S. Baik, T. Eurell, M. Strano // Advanced Materials. – 2005. – Vol. 17, №23. – Р. 2793–2799.
Heller, I. Identifying the Mechanism of Biosensingwith Carbon Nanotube Transistors / I. Heller, A.M. Janssens, J. Mannik, E.D. Minot, S.G. Lemay, C. Dekker // Nano Lett. – 2008. –Vol. 8, №2. – P. 591–595.
Hernandez, J. Prostate-specific antigen: A review of the validation of the most commonly used cancer biomarker / J. Hernandez, I.M. Thompson // Cancer. – 2004. – Vol. 101, №5, P. 894–904.
Hu, P.A. Carbon Nanostructure-Based Field-Effect Transistors for Label-Free Chemical/Biological Sensors / P.A. Hu, J. Zhang, L. Li, Z. Wang, W. O’Neill, P. Estrela // Sensors. – 2010. – Vol. 10, №5. – P. 5133–5159.
Iijima, S. Helical microtubules of graphitic carbon / Sumio Iijima //Nature. – 1991. – Vol. 354. – P. 56–58.
Kam, N.W.S. Functionalization of Carbon Nanotubes via Cleavable Disulfide Bonds for Efficient Intracellular Delivery of siRNA and Potent Gene Silencing / N.W.S. Kam, H. Dai // J. Am. Chem. Soc. – 2005. – Vol. 127, №36, P. 12492–12493.
Kim, J.P. Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments / J.P. Kim, B.Y. Lee , S. Hong , S.J. Sim // Analytical Biochemistry. – 2008. – Vol. 381, №2. – P. 193–198.
Li, C. Complementary Detection of Prostate-Specific Antigen Using In2O3 Nanowires and Carbon Nanotubes / Chao Li, M. Curreli , H. Lin, B. Lei, F. N. Ishikawa, R. Datar, R.J. Cote, M.E. Thompson, C. Zhou // J. Am. Chem. Soc. – 2005. – Vol. 127, №36. – P. 12484–12485.
Li, J. Carbon Nanotube Nanoelectrode Array for Ultrasensitive DNA Detection / J. Li, H. T. Ng, A. Cassell, W. Fan, H. Chen, Q. Ye, J. Koehne, J. Han, M. Meyyappan // Nano Letters. – 2003. – Vol. 3, №5. – Р. 597–602.
Martel, R. Single- and multi-wall carbon nanotube field-effect transistors / T. Schmidt, H. R. Shea, T. Hertel, Ph. Avouris // Applied Physics Letters. – 1998. – Vol. 73. – P. 2447–2449.
Noy, A. Bionanoelectronics with 1D materials / A. Noy, A.B. Artyukhin, N. Misra // Materials today. – 2009. – Vol. 12, №9. – P. 22–31.
Peng, N. Sensing Mechanisms for Carbon Nanotube Based NH3 Gas Detection / N. Peng, Q. Zhang, C.L. Chow, O.K. Tan, N. Marzari // Nano Lett. – 2009. – Vol. 9, №4. – P. 1626–1630.
Poghossian, A. Label-free detection of charged macromolecules by using a field-effect-based sensor platform: Experiments and possible mechanisms of signal generation / A. Poghossian, S. Ingebrandt, M.H. Abouzar, M.J. Schoning // Appl. Phys. A. – 2007. – Vol. 87, №3. – P. 517–524.
So, H.M. Single-Walled Carbon Nanotube Biosensors Using Aptamers as Molecular Recognition Elements / H.M. So, K. Won, Y.H. Kim, B.K. Kim, B.H. Ryu, P.S. Na, H. Kim, J.O. Lee // J. Am. Chem. Soc. – 2005. - Vol. 127, №34, P. 11906–11907.
Staii, C. DNA-Decorated Carbon Nanotubes for Chemical Sensing / C. Staii, A.T. Johnson // Nano Letters. – 2005. – Vol. 5, №9. – Р. 1774–1778.
Stern, E. Label-free biomarker detection from whole blood / E. Stern, A. Vacic, N.K. Rajan, J.M. Criscione, J. Park, B.R. Ilic, D.J. Mooney, M.A. Reed, T.M. Fahmy // Nat. Nanotechnol. – 2010. - Vol. 5, №10, P. 138-142.
Tang, X. W. Carbon Nanotube DNA Sensor and Sensing Mechanism / X.W. Tang, S. Bansaruntip, N. Nakayama, E. Yenilmez, Y.L. Chang, Q. Wang // Nano Lett. – 2006. – Vol. 6, №8. – P. 1632–1636.
Tans, S. Room-temperature transistor based on a single carbon nanotube / Sander J. Tans, Alwin R. M. Verschueren, Cees Dekker // Nature. – 1998. – Vol. 393. – P. 49–52.
Veetil, J.V. Development of Immunosensors Using Carbon Nanotubes / J.V. Veetil, K. Ye // Biotechnol Prog. – 2007. – Vol. 23, №3. – P. 517−531.
Wang, C.W. In Situ Detection of Chromogranin A Released from Living Neurons with a Single-Walled Carbon-Nanotube Field-Effect Transistor / C.W. Wang, C.Y. Pan, H.C. Wu, P.Y. Shih, C.C. Tsai, K.T. Liao, L.L. Lu, W.H. Hsieh, C.D. Chen, Y.T. Chen // Small 3. – 2007. – Vol. 3, №8, P. 1350–1355.
Wang, J. Carbon-Nanotube Based Electrochemical Biosensors: A Review / J. Wang // Electroanalysis. – 2005. – Vol. 17, №1, P. 7–14.
Wang, Y. Performance Investigation for a Silicon NW FET Biosensor Using Numerical Simulation / Y. Wang, G. Li // IEEE Nanotechnology Materials and Devices Conference. – Monterey, California (USA), 2010. – P. 81–86.
Zanello, L.P. Bone Cell Proliferation on Carbon Nanotubes / L.P. Zanello, B. Zhao, H. Hu, R. C. Haddon // Nano Letters. – 2006. – Vol. 6, №3, P. 562–567.
Zheng, G. Multiplexed electrical detection of cancer markers with nanowire sensor arrays / G. Zheng, F. Patolsky, Y. Cui, W.U. Wang, C.M. Lieber // Nature Biotechnology. – 2005. - Vol. 23, P. 1294 – 1301