Conditions for belonging of a two-component mixture of distributions to one type
Main Article Content
Abstract
A general case the two-component Gaussian mixture is examined. It is shown that by varying the parameters of components of the mixture a large family of distributions can be obtained. A criterion for the distribution function is found, defining the mixtures’ belonging to one type. The conditions, which the component parameters of uniform mixtures should meet, are determined. Formulas for the transition from a random variable with arbitrary values of the expectation and variance to the standard random variable with zero mean and unit variance were derived.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
Величкин А.И. Передача аналоговых сооб- щений по цифровым каналам связи. – М.: Радио и связь, 1983. – 240 с.
Горовецкая Т.А., Красильников А.И., Чан Хыу Дат. Модели и законы распределения флуктуационных сигналов // Электроника и связь. – 2000. – № 9. – С. 5–14.
K.N. Plataniotis and D. Hatzinakos. Gaussian Mixtures and Their Applications to Signal Processing Handbook. Editor Stre– Boca Raton: CRC Press LLC, 2001. – Р. 47.
Лукач. Е. Характеристические функции /Пер. с англ. – М.: Наука, 1979. – 424 с.
Феллер В. Введение в теорию вероятностей и ее приложения. В 2 томах. Т. 1 / Пер. с англ. – М.: Мир, 1984. – 528 с.
Красильников А.И., Пилипенко К.П. Приме- нение двухкомпонентной гауссовской смеси для идентификации одновершинных сим- метричных плотностей вероятностей // Электроника и связь. – 2008. – № 5(46). – С. 20–29.
Красильников А.И., Пилипенко К.П. Одно- вершинная двухкомпонентная гауссовская смесь. Коэффициент эксцесса // Электрони- ка и связь. – 2007. – № 2(37). – С. 32–38.
Тихонов В.И. Статистическая радиотехника. - 2-е изд., перераб и доп.- М.: Радио и связь, 1982. - 624с.