Nanostructured materials based on pure titanium and bio-soluble magnesium alloy to create surgical implants
Main Article Content
Abstract
Influence of structural state on mechanical properties of pure titanium and magnesium alloy WE43 as candidates for use as nondegradable (titanium) and degradable (WE43) medical implants was studied. By the methods of severe plastic deformation in combination with programmed heat treatment the nanostructured pure titanium and ultra-fine-grained magnesium alloy WE43 were obtained. It is shown, that grain size substantially affects not only the mechanical properties of the indicated materials but also the corrosion rate of magnesium alloy WE43 in the medium simulating biological fluid. The possibility of replacing the titanium implants by nanostructured pure titanium and future application of degradable ultra-finegrained magnesium implants is discussed
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
Rodionov I.V. “Fiziko-himicheskie i mekhanicheskie harakteristiki parooksidnyh biosovmestimyh pokrytij titanovyh implantatov [Physicochemical and mechanical characteristics of vapor-oxide biocompatible coatings of titanium implants]/”, Materialovedenie, no. 10, pp. 25-34, 2009
P. Schmutz, N. C. Quach-Vu, and I. Gerber, “Metallic medical implants: electrochemical characterization of corrosion processes”, Electrochem. Soc. Interface, vol. 17, no. 2, pp. 35-40, 2008. Available: http://interface.ecsdl.org/site/misc/if_sum08.xhtml
Alvarez K, Nakajima H. “Metallic Scaffolds for Bone Regeneration.” Materials vol. 2, no.3, pp.790–832, 2009 doi:10.3390/ma2030790
M. P. Staiger, A. M. Pietak, J. Huadmai, G. Dias, “Magnesium and its alloys as orthopedic biomaterials: A review”, Biomaterials, vol. 27, no. 9, pp.1728-1734, 2006, https://doi.org/10.1016/j.biomaterials.2005.10.003.
Vormann J., “Magnesium: nutrition and metabolism”, Mol Aspects Med, vol. 24, no. 1-3, pp. 27-37, 2003 doi: 10.1016/s0098-2997(02)00089-4.
Valiev R.Z., Semenova I.P., Latysh V.V., Sherbakov A.V., Yakushina E.B. “Nanostrukturnyj titan dlya biomedicinskih primenenij: novye razrabotki i perspektivy kommercializacii [Nanostructured titanium for biomedical applications: new developments and commercialization prospects]”, Rossijskie nanotekhnologii,, vol. 3, no. 9-10, pp.80-89, 2008
Kutniy K.V., Volchok O.I., Kislyak I.F., Tikhonovsky M.A., Storozhilov G.E., “Obtaining of pure nanostructured titanium for medicine by severe deformation at cryogenic temperatures”, Mat.-wiss. u. Werkstofftech, vol. 42, no.2, pp.114-117, 2011
Kutniy K.V., Papirov I.I., Tikhonovsky M.A., Pikalov A.I. et al. “Influence of grain size on mechanical and corrosion properties of magnesium alloy for medical implants” Mat.-wiss. u. Werkstofftech, vol.40, no.4. pp. 242-246, 2009
Papirov I.I., Tikhonovsky M.A., Kutniy K.V. et al. “Biodegradable magnesium alloys for medical application“, Functional materials, vol. 15, no. 1, pp.139-143, 2008
Witte F., Fischer J., Nellesen J. “In vitro and in vivo corrosion measurements of magnesium alloys”, Biomaterials, vol. 27, no. 7, pp.1013-1018, 2006