Thermal treatment of silica optical fibers with CO2-laser radiation

Main Article Content

S. Khotiaintsev
A.N. Castro-Martinez

Abstract

We investigate theoretically and experimentally the effect of high-power CO2–laser radiation on silica optical fibers. We show that it takes several tens of milliseconds to heat the standard single–mode silica optical fiber to the fusing temperature of silica with the focused radiation of the CO2 laser of an output power of about 5 W. A point by point exposure of the optical fiber to the focused radiation of the CO2 laser under simultaneous axial tension results in a periodic necking of the optical fiber. Such an alteration of fiber parameters constitutes the Long Period Fiber Grating

Article Details

How to Cite
Khotiaintsev, S. ., & Castro-Martinez, A. . (2011). Thermal treatment of silica optical fibers with CO2-laser radiation. Electronics and Communications, 16(4), 172–176. https://doi.org/10.20535/2312-1807.2011.16.4.246655
Section
Systems of telecommunication, communication and information protection

References

Bogomolov N., Svirid V., Khotiaintsev S. Welding of optical fibres // Vestnik Kiev. Polytechn. Inst. Radiotechnika (In Russian), 1982, no.19, pp.11–12

Svirid V., Bogomolov N., Khotiaintsev S. Manufacturing of optical-fibre directional coupler with laser and electrical–discharge welding, Vestnik Kiev Polytechn. Inst. Radiotechnika, 1984, no.21, pp.22–24.

Vengsarkar A.M., Lemaire P.J., Judkins J.B., Bhatia V., Erdogan T., Sipe J. E. Long-period

fiber gratings as band-rejection filters, J. Lightwave Technol, 1996, no.14, pp.58–65.

Bhatia V., Vengsarkar A.M. Optical fiber longperiod grating sensors, Optics Letters, 1996, no.9, pp.692–694

Vengsarkar A.M., Pedrazzani J.R., Judkins J.B., Lemaire P.J., Bergano N.S., Davidson C. R. Long-period fiber-grating-based gain equalizer, Optics Letters, 1996, no.5, pp.336–338

Anemogiannis E., Glytsis E.N., Gaylord T.K. Transmission characteristics of long-period fiber gratings having arbitrary azimuthal/radial refractive index variations, J. Lightwave Technol, 2003, no.1, pp.218–227

James S.W., Tatam R.P. Optical fibre longperiod grating sensors: characteristics and application, Meas. Sci. Technol, 2003, no.5, pp.R49–R61

DeLisa M.P., Zhang Z., Shiloach M., Pilevar S., Davis C.C., Sirkis J.S., Bentley W.E. Evanescent wave long-period fiber Bragg grating as an immobilized antibody biosensor, Anal. Chem., 2000, no.13, pp.2895–2900

Ramachandran S., Ghalmi S., Wang Z., Yan M. Band-selection filters with concatenated long-period gratings in few-mode fibers, Optics Letters, 2002, no.9, pp.1282–1284

Jang J.N., Kim S.Y., Kim S.W., Kim M.S. Novel temperature intensive long-period grating by

using the refractive index of the outer cladding, Optical Fiber Communication Conference, 2000, p.Tu84

Jang J.N., Kim S.Y., Kim S.W., Kim M.S. Temperature intensitive long-period fibre gratings, Electronics Letters, 1999, no.24, pp. 2134-2136

Ke H., Peng J., Fan C. Design of long-period fiber gratings with fast-varying parameters, Photonics Technology Letters, 2001, no.11, pp.1194–1196

Lin C.Y., Wang L.A. A wavelength- and losstunable band rejection filter based on corrugated long-period fiber grating, Photonics Technology Letters, 2001, no.4, pp. 332–334

Qian J.R., Chen H.F. Gain flattening fiber filters using phase-shifted long period fiber gratings, Electronics Letters, 1998, no.11, pp.1132-1133

Harumolo M., Shigehara M., Kakui M., Kananori H., Nishimura M. Compact long-period grating module with multi-attenuation peaks, Electronics Letters, 1998, no.6, pp. 512–513

Davis D.D., Gaylord T.K., Glytsis E.N., Mettler S.C. Very high-temperature stable CO2-laserinduced long-period fibre gratings, Electronics Letters, 1999, no.9, pp.740–742

Drozin L., Fonjallaz P.Y., Stensland L. Longperiod fibre gratings written by CO2 exposure of H2-loaded standard fibres // Electronics Letters, 2000, no.8, pp.742–743

Oh S.T., Song C.C., Lee B.H., Chung Y., Han W.T., Paek U.C. Fabrication of azimuthally symmetric long-period fiber gratings with CO2laser, Optoelectronic Communications Conference, 2001, pp.22–23

Chen K.P., Herman P. R., Zhang J., Tam R. Fabrication of strong long-period gratings in hydrogen-free fibers with 157-nm F2-laser radiation, Optics Letters., 2001, no.11, pp.771– 773

Hill K.O., Fujii Y., Johnson D.C., Kawasaki B.S. Photosensitivity in optical fiber waveguides:

Application to reflection filter fabrication, Appl. Phys. Lett., 1978, no.10, pp.647–649

Otto M., Michael F., Duthel T., Schaffer C. Flexible manufacturing method for long-period fibre gratings with arbitrary index modulation profiles, Fibre and Optical Passive Components. Proceedings of 2002 IEEE/LEOS Workshop , 2002, pp.6–11

Humbert G., Malki A. Annealing time dependence at very high temperature of electric arcinduced long-period fibre gratings, Electronics Letters, 2002, no.10, pp.449–450

Dianov E.M., Karpov V.I., Grekov M.V., Golant K.M., Vasiliev S.A., Medvedkov O.I., Kharpko R.R., Thermo-induced long-period fibre gratings, 23rd European Conference on Optical Communications, 1997, pp.53–56

Zolotarev V.M., Morozov V.N., Smirnova E.V. Opticheskie postoyannye prirodnyh i

tekhnicheskih sred. Spravochnik [Optical constants of natural and technical environments. Directory], Leningrad: Himiya, 1984, p. 216

Malitson I.H. Interspecimen comparison of the refractive index of fused silica, Journal of the

Optical Society of America, 1965, no.10, pp.1205–1208