Comparative analysis of modern automated algorithms image segmentation

Main Article Content

O.M. Lisenko
A.YU. Varfolomєєv

Abstract

Unsupervised image segmentation algorithms based on-mean clustering, expectation-maximization, mean-shift, normalized graph cut, weighted aggregation, statistical region merging, JSEG, HGS and ROI-SEG are considered. The results of segmentation obtained by mentioned algorithms on textural, satellite and natural images are presented. The analysis of quality and segmentation speed of each algorithm realization is performed

Article Details

How to Cite
Lisenko, O. ., & Varfolomєєv A. . (2012). Comparative analysis of modern automated algorithms image segmentation. Electronics and Communications, 16(5), 37–47. https://doi.org/10.20535/2312-1807.2011.16.5.247555
Section
Methods and means of processing signals and images

References

D. Forsajt and Z. Pons., Komp'yuternoe zrenie [Computer vision], Moscow: Izdatel’skij dom «Vil’yams», 2004, p. 928.

D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature space analysis”, IEEE Trans. Pattern Anal. Machine Intell., vol. 24, no. 5, pp. 603–619, May 2002. DOI: 10.1109/34.1000236

J. Shi and J. Malik, “Normalized cuts and image segmentation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 888–905, Aug. 2000. DOI: 10.1109/34.868688

M. Galun, E. Sharon, R. Basri, and A. Brandt, “Texture segmentation by multiscale aggregation of filter responses and shape elements”, in Proceedings Ninth IEEE International Conference on Computer Vision, Nice, France, 2003, vol. 1, pp. 716–723. DOI:10.1109/ICCV.2003.1238418

R. Nock and F. Nielsen, “Statistical region merging”, IEEE Trans. Pattern Anal. Machine Intell., vol. 26, no. 11, pp. 1452–1458, Nov. 2004. DOI: 10.1109/TPAMI.2004.110

Y. Deng and B. Manjunath, “Unsupervised segmentation of color-texture regions in images and video”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 8, pp. 800–810, Aug. 2001. DOI: 10.1109/34.946985

M. A. Hoang, J.-M. Geusebroek, and A. W. M. Smeulders, “Color Texture Measurement and Segmentation”, Signal Processing, vol. 85, no. 2, pp. 265–275, 2005.

J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust Wide Baseline Stereo from Maximally Stable Extremal Regions”, in Procedings of the British Machine Vision Conference 2002, Cardiff, 2002, pp. 36.1–36.10.

M. Donoser and H. Bischof, “ROI-SEG: Unsupervised Color Segmentation by Combining Differently Focused Sub Results”, in 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 2007, pp. 1–8. DOI:10.1109/CVPR.2007.383231

A. Hoover, “An experimental comparison of range image segmentation algorithms”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, no. 7, pp. 673–689, Jul. 1996. DOI: 10.1109/34.506791

S. Lloyd, “Least squares quantization in PCM”, IEEE Transactions on Information Theory, vol. 28, no. 2, pp. 129–137, Mar. 1982. DOI: 10.1109/TIT.1982.1056489

A. Bhattacharyya, “On a measure of divergence between two statistical populations defined by their probability distributions”, Bulletin of the Calcutta Mathematical Society, no. 35, pp. 99–109, 1943.

The Prague Texture Segmentation Datagenerator and Benchmark. http://mosaic.utia.cas.cz/index.php 19.05.2011

The Berkeley Segmentation Dataset and Benchmark. http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/ – 19.05.2011

http://maps.yandex.ru/ 19.05.2011