Nanoscale electron-photonic devices surface plasmonic polaritons

Main Article Content

O.D. Volpyan
A.I. Kuzmichev

Abstract

Principal directions of realization of nanophotonic devices based on surface plasmon polaritons and technological aspects of plasmon nanophotonics are considered

Article Details

How to Cite
Volpyan, O. ., & Kuzmichev, A. . (2011). Nanoscale electron-photonic devices surface plasmonic polaritons. Electronics and Communications, 16(1), 5–11. https://doi.org/10.20535/2312-1807.2011.16.1.273644
Section
Nanostructures and nanotechnology in electronics

References

V. Agranovich and D. Mills, Surface polaritons. Electromagnetwaves on surfaces and boundaries affairs, Moscow: Nauka, 1985, p. 525.

R. Gordon, “Surface plasmon nanophotonics: A tutorial”, IEEE Nanotechnology Magazine, vol. 2, no. 3, pp. 12–18, Sep. 2008.

S. Zouhdi, Metamaterials and Plasmonics: Fundamentals,Modelling, Applications, Springer, 2009, p. 305.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry”, Physics Today, vol. 61, no. 5, pp. 44–50, May 2008.

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. Larsen, and S. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons”, Journal of Lightwave Technology, vol. 23, no. 1, pp. 413–422, Jan. 2005.

R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons”, Optics Express, vol. 13, no. 3, p. 977, Jan. 2005.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength Selective Nanophotonic Components Utilizing Channel Plasmon Polaritons”, Nano Letters, vol. 7, no. 4, pp. 880–884, Mar. 2007.

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses”, Optics Letters, vol. 31, no. 23, p. 3447, Nov. 2006.

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths”, Optics Express, vol. 16, no. 8, p. 5252, Apr. 2008.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths”, Applied Physics Letters, vol. 85, no. 24, pp. 5833–5835, Dec. 2004.

P. J. Bennett, S. Dhanjal, P. Petropoulos, D. J. Richardson, N. I. Zheludev, and V. I. Emelyanov, “A photonic switch based on a gigantic, reversible optical nonlinearity of liquefying gallium”, Applied Physics Letters, vol. 73, no. 13, pp. 1787–1789, Sep. 1998.

F. Rana, “Graphene Terahertz Plasmon Oscillators”, IEEE Transactions on Nanotechnology, vol. 7, no. 1, pp. 91–99, Jan. 2008.

O. Volpyan and A. Kuzmichev, “Questions of technicaltechnology of nanostructured photonic meta-materials”, Electronics and communication, no. 2-3, pp. 50–55, 2009.

O. Volpyan and A. Kuzmichev, “Magnetrondeposition of optical coatings during feedingmagnetrons with alternating voltagemedium frequency”, Applied Physics, no. 3, pp. 34–52, 2008.