Comparative analysis of breathing monitor designs
Main Article Content
Abstract
The article deals with issues related to the constructions of the respiratory monitoring devices (respiratory monitors). A comparison of its functionality is done. The using of certain respiratory monitor for diagnosis of sleep apnea in children of preschool age is emphasized
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
V. Lopata, O. Petrova, P. Black, O. Kutsyak, and M.-A. Shebach, “Technical aspects of breathing monitor development”, Electronics and communication, no. 3-4, pp. 137–140, 2008.
N. Anishkina, V. Antonets, and V. Lopata, Methods and equipment for research mechanical activity of the human cardiorespiratory system. Teaching method manual, Nizhny Novgorod, 2001.
V. Lopata, “Optimum choice of flow-rate sensors for spirometry”, in IX Polish-German Conference on Advances in Experimental and Clinical Pneumology, 8-10 May 2003, p. 29.
www.rsleads.com/411df-135
M. Balleza, “Monitoring of Breathing Pattern at Rest by Electrical Impedance Tomography”, Archivos de Bronconeumología ((English Edition)), vol. 43, no. 6, pp. 300–303, Jan. 2007. DOI:10.1016/S1579-2129(07)60074-3
C. F. Clarenbach, O. Senn, T. Brack, M. Kohler, and K. E. Bloch, “Monitoring of Ventilation During Exercise by a Portable Respiratory Inductive Plethysmograph”, Chest, vol. 128, no. 3, pp. 1282–1290, Sep. 2005. DOI:10.1378/chest.128.3.1282
F. H. Wilhelm, W. T. Roth, and M. A. Sackner, “The LifeShirt: An Advanced System for Ambulatory Measurement of Respiratory and Cardiac Function”, Behavior Modification, vol. 27, no. 5, pp. 671–691, Oct. 2003. DOI:10.1177/0145445503256321
E. Jovanov, D. Raskovic, and R. Hormigo, “Thermistor-based breathing sensor for circadian rhythm evaluation”., Biomed Sci Instrum, vol. 37, pp. 493–497, 2001.
V. Bekos and J. J. Marini, “Monitoring the Mechanically Ventilated Patient”, Critical Care Clinics, vol. 23, no. 3, pp. 575–611, Jul. 2007. DOI:10.1016/j.ccc.2007.07.007
R. Farre, “Noninvasive monitoring of respiratory mechanics during sleep”, European Respiratory Journal, vol. 24, no. 6, pp. 1052–1060, Dec. 2004. DOI:10.1183/09031936.04.00072304
D. G. Markhorst, J. P. Van Gestel, H. R. Van Genderingen, J. J. Haitsma, B. Lachmann, and A. J. Van Vught, “Respiratory inductive plethysmography accuracy at varying PEEP levels and degrees of acute lung injury”, Journal of Medical Engineering & Technology, vol. 30, no. 3, pp. 166–175, 2006. DOI:10.1080/03091900500529826
V. Lopata, “Optimum choice of flow-rate sensors for spirometry”, J. of Physiology & Pharmacology, suppl. 1 “9th Polish-German Conference on Advances in Experimental and Clinical Pneumology, 8-10 May 2003, Zakopane, Poland”, vol. 54, p. 65, Jan. 2003.
R. R. Millman, D.-C. C. Chung, and E. T. Shore, “Importance of Breath Size in Calibrating the Respiratory Inductive Plethysmograph”, Chest, vol. 89, no. 6, pp. 840–845,1986 DOI:10.1378/chest.89.6.840
T. Takarada, “An Alternative Approach to the Monitoring of Respiration by Dynamic Air-Pressure Sensor”, Anesthesia Progress, vol. 54, no. 1, pp. 2–6, Mar. 2007. DOI:10.2344/0003-3006(2007)54[2:AAATTM]2.0.CO;2
N. O. T. Strömberg, “Error analysis of a natural breathing calibration method for respiratory inductive plethysmography”, Medical & Biological Engineering & Computing, vol. 39, no. 3, pp. 310–314, May 2001 DOI:10.1007/BF02345285
R. Matejka and K. Roubik, “Advanced monitoring system for conventional and high frequency ventilation”, Likař a technika, vol. 38, no. 2, pp. 164–167, 2008.
Michard F., Biévres V., Knoll R., Pfeiffer U. Apparatus for evaluating a patient’s hemodynamic status using heart-lung interaction, EPO patent EP 1 813 187 A1, 01.08.2007, Bulletin 2007/31
D. McCool, J. Wang, and K. Ebi, “Tidal Volume and Respiratory Timing Derived From a Portable Ventilation Monitor”, Chest, vol. 122, pp. 684–691, 2002.
V. A. Lopata, “Medical and technical requirements for flowspirometers: standards, prospects and implementation possibilities”, Ukrainian Pulmonology Journal, no. 3, pp. 46–49, 2005.
P. Kremlevsky, Flow meters and counters quantities: Directory, 4th ed. Leningrad: Mechanical Engineering. Leningrad branch, 1989, p. 701.
http://www.cptinc.com/respmech/ezflow/ezflow.htm
http://www.servinst.ru/Files/pdf/VentCheck.pdf
M. Kovalenko, I. Mankovska, V. Nosar, M. Bondar, O. Kutsyak, and Yanchіy R., “Possibility of monitoring Dihannia in clinical practice”, Electronics and communication, no. 3-4, pp. 131–136, 2008.
V. Lopata, O. Ostrovsky, and H. Elyozi, “Functional characteristics assessment flowspirometric transducers air flow”, in International conference on biomedical instrumentation BIOMEDPRIBOR-98. Abstracts of reports, 1998, pp. 210–211.
R. Barr, “Reproducibility and validity of a handheld spirometer”., Respir Care, vol. 53, no. 4, pp. 433–441, Apr. 2008.