Frequency characteristics investigation of tunable microstrip antenna structure

Main Article Content

Yurii Myhailovych Poplavko
А. A. Voloshyn
N. A. Ruda
Yuriy Vasiliovich Prokopenko

Abstract

The micromechanical method of frequency parameters tuning of microstrip antenna with a circular radiator is investigated in paper. It is shown that the change in the size of the air gap between the dielectric substrate and the metal patch changes the effective dielectric constant of line under the antenna which affects the operating frequency of the device, the return loss value and bandwidth. The effect of physical and geometrical parameters of the antenna structure on its radiative characteristics is analyzed. The proposed method enables tuning of antenna parameters in frequency domain increasing the radiation efficiency and extending its operating frequency range. Reference 14, figures 10

Article Details

How to Cite
Poplavko, Y. M., Voloshyn А. A., Ruda, N. A., & Prokopenko, Y. V. (2014). Frequency characteristics investigation of tunable microstrip antenna structure. Electronics and Communications, 19(4), 15–22. https://doi.org/10.20535/2312-1807.2014.19.4.31742
Section
Solid-state electronics

References

Dubrovka, FF, Martynyuk, SY 2009. Stripline antenna array for local information-telecommunication radio networks. Radioelectronics and Communications Systems, vol. 52, no. 8, pp. 445-448. Available at: http://radio.kpi.ua/article/view/S0021347009080093

Fang D.G. (2010), “Antenna Theory and Microstrip Antennas”. CRC Press: Taylor & Francis Group. P.635.

Garg R., Bhartia P., Bahl I., Ittipiboon A. (2001), “Microstrip Antenna Design Handbook”. Artech House antennas and propagation library. P. 817.

Golubeva I., Kazmirenko V., Sergiyenko P. and Prokopenko Y (2012), “Effective permittivity in tunable microstrip and coplanar lines”. Proceedings of the XXXII International Scientific Conference ELNANO 2012, pp. 69-70.

Guney K., Sarikaya N. (2009), “A comparative study of models of adaptive systems with fuzzy logic, designed to calculate the resonant frequency of round microstrip antennas”. Radiotechnics and Electronics. Vol. 54, no. 4, pp. 389 – 400.

Johnson R.C. (1993), “Antenna engineering handbook. Third edition”. McGraw-Hill. P. 511.

Kumar G., Ray K.P. (2003), “Broadband microstrip antennas”. Artech House antennas and propagation library. P. 325.

Lee K.-F. (1989), “Microstrip patch antennas – basic properties and some recent advances”. Journal of Atmospheric and Terrestrial Physics. Vol. 51, no. 9/10, pp. 811 – 818.

Pozar D.M. (1992), “Microstrip Antennas”. Proceedings of IEEE. Vol. 80, no. 1, pp. 79 – 92.

Ruda N., Prokopenko Y., Poplavko Y. (2011), “Electromagnetic analysis of waveguide-dielectric phase shifter”. Electronics and Communications. No. 2(61), pp. 46 – 51.

Targonsky S.D., Waterhouse R.B., Pozar D.M. (1998), “Design of Wide-Band Aperture-Stacked Patch Microstrip Antennas”. IEEE Transactions on Antennas and Propagation. Vol. 46, no.9, pp. 1245 – 1251.

Bolotov V.N., Kirichok A.V., Tkach Yu.V. (1998), “Experimental research of fractal antennas”. Elektromagnitnyie yavleniia. V. 1, no. 4, pp. 483 – 497. (Rus.)

Lobkova L.M., Shchebetovskii V.G., Shestakov А.G. (2003) “Radiating characteristics of microstrip antennas”. Vestnik SevGTU. V. 47, pp. 102-111. (Rus.)

Los V.F. (2002), “Microstrip and dielectric resonator antennas”. SAPR-modeli: metody matematicheskogo modelirovaniia. Мoskva, IPRZhR. P. 96. (Rus.)