Methods of EEG analysis for prediction of epileptic seizures

Main Article Content

Олег Юрійович Панічев

Abstract

This paper considers epileptic seizures prediction methods based on electroencephalograms analysis. Basic methods of signal analysis for seizure prediction and the results of their application are presented. Methods of signal analysis in time domain (signal energy and curve length), methods based on signal transformation (spectral and wavelet analysis) and nonlinear methods (entropy analysis and synchronization analysis) were considered. Main problems that arise in epileptic seizures prediction are low noise resistance of methods and their unsuitability for EEG signals measured noninvasively. Recommendations for future research directions in seizure prediction are given.

Ref. 23, figs. 1.

Article Details

How to Cite
Панічев, О. Ю. (2015). Methods of EEG analysis for prediction of epileptic seizures. Electronics and Communications, 20(3), 68. https://doi.org/10.20535/2312-1807.2015.20.3.38776
Section
Biomedical devices and systems
Author Biography

Олег Юрійович Панічев, Національний технічний університет України "Київський політехнічний інститут"

Аспірант кафедри Фізичної та біомедичної електроніки, факультет електроніки, НТУУ "КПІ"

References

Bandarabadi, M., Teixeira, C.A., Sales, F., Dourado, A. (2011) “Wepilet, optimal orthogonal wavelets for epileptic seizure prediction with one single surface channel“. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society,EMBC. , P. 7059–7062.

Bandt, C., Pompe, B. (2002) "Permutation Entropy: A Natural Complexity Measure for Time Series". Phys. Rev. Lett. 2002. Vol. 88. № 17. P. 174102.

Carney, P.R., Myers, S., Geyer, J.D. (2011) "Seizure prediction: methods". Epilepsy Behav. EB. 2011. Vol. 22 Suppl 1. P. S94–101.

Cortes, C., Vapnik, V. (1995) "Support-Vector Networks". Mach. Learn. 1995. Vol. 20. № 3. P. 273–297.

D’Alessandro, M., Esteller, R., Vachtsevanos, G., Hinson, A., Echauz, J., Litt, B. (2003) "Epileptic seizure prediction using hybrid feature selection over multiple intracranial EEG electrode contacts: a report of four patients". IEEE Trans. Biomed. Eng. 2003. Vol. 50. № 5. P. 603–615.

Engel, J.J. (2012) "Seizures and Epilepsy". New York: Oxford University Press 2 edition, 2012. - 736 p.

Esteller, R., Echauz, J., D’Alessandro, M., Worrell, G., Cranstoun, S., Vachtsevanos, G., Litt, B. (2005) "Continuous energy variation during the seizure cycle: towards an on-line accumulated energy". Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2005. Vol. 116. № 3. P. 517–526.

Fisher, R.S., Krauss, G.L., Ramsay, E., Laxer, K., Gates, J. (1997) "Assessment of vagus nerve stimulation for epilepsy: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology". Neurology. 1997. Vol. 49. № 1. P. 293–297.

Iasemidis, L.D. (2003) "Epileptic seizure prediction and control". IEEE Trans. Biomed. Eng. 2003. Vol. 50. № 5. P. 549–558.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. (1998) "Gradient-based learning applied to document recognition". Proc. IEEE. 1998. Vol. 86. № 11. P. 2278–2324.

Litt, B., Esteller, R., Echauz, J., D’Alessandro, M., Shor, R., Henry, T., Pennell, P., Epstein, C., Bakay, R., Dichter, M., Vachtsevanos, G. (2001) "Epileptic seizures may begin hours in advance of clinical onset: a report of five patients". Neuron. 2001. Vol. 30. № 1. P. 51–64.

Mammone, N., Lay-Ekuakille, A., Morabito, F.C., Massaro, A., Casciaro, S., Trabacca, A. (2011) Analysis of absence seizure EEG via Permutation Entropy spatio-temporal clustering / N. Mammone, A. Lay-Ekuakille, F.C. Morabito, A. Massaro, S. Casciaro, A. Trabacca // 2011 IEEE International Workshop on Medical Measurements and Applications Proceedings (MeMeA). 2011. С. 532–535.

Mirowski, P.W., LeCun, Y., Madhavan, D., Kuzniecky, R. (2008) Comparing SVM and convolutional networks for epileptic seizure prediction from intracranial EEG / P.W. Mirowski, Y. LeCun, D. Madhavan, R. Kuzniecky // IEEE Workshop on Machine Learning for Signal Processing, 2008. MLSP 2008. , 2008. С. 244–249.

Mormann, F., Andrzejak, R.G., Elger, C.E., Lehnertz, K. (2007) "Seizure prediction: the long and winding road". Brain. 2007. Vol. 130. № 2. P. 314–333.

Mormann, F., Andrzejak, R.G., Kreuz, T., Rieke, C., David, P., Elger, C.E., Lehnertz, K. (2003) "Automated detection of a preseizure state based on a decrease in synchronization in intracranial electroencephalogram recordings from epilepsy patients". Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2003. Vol. 67. № 2 Pt 1. P. 021912.

Park, Y., Luo, L., Parhi, K.K., Netoff, T. (2011) "Seizure prediction with spectral power of EEG using cost-sensitive support vector machines". Epilepsia. 2011. Vol. 52. № 10. P. 1761–1770.

Penfield, W. (1933) "The evidence for a cerebral vascular mechanism in epilepsy". Ann. Intern. Med. 1933. Vol. 7. № 3. P. 303–310.

Quiroga, R.Q. (1998) "Quantitative analysis of EEG signals: Time-Frequency methods and Chaos Theory". 1998.

Rasekhi, J., Mollaei, M.R.K., Bandarabadi, M., Teixeira, C.A., Dourado, A. (2013) "Preprocessing effects of 22 linear univariate features on the performance of seizure prediction methods". J. Neurosci. Methods. 2013. Vol. 217. № 1-2. P. 9–16.

Rogowski, Z., Gath, I., Bental, E. (1981) "On the prediction of epileptic seizures". Biol. Cybern. 1981. Vol. 42. № 1. P. 9–15.

Saab, M.E., Gotman, J. (2005) "A system to detect the onset of epileptic seizures in scalp EEG". Clin. Neurophysiol. 2005. Vol. 116. № 2. P. 427–442.

Wang, S., Chaovalitwongse, W.A., Wong, S. (2013) "Online Seizure Prediction Using an Adaptive Learning Approach". IEEE Trans. Knowl. Data Eng. 2013. Vol. 25. № 12. P. 2854–2866.

Zenkov L. R. (1996), “Clinical Electroencephalography (with elements of epilepsy)”. Taganrog TSURE Publishing. Р. 358. (Rus)