Physical fields of planar sonars which consists of cylindrical piezoceramic emitters
Main Article Content
Abstract
Using related fields method in multi related areas the problem of sound emitting by planar sonar, which consist of cylindrical piezoceramic emitters was solved. This solution allows us to take into account the interaction of electrical, mechanical and sound fields during the process of converting electrical energy into acoustical and the interaction of the transmitters in the sound field, which is caused by numerous reflections of sound waves from the elements of the sonar. The analytical expressions, that allow to compute characteristics of all physical fields, that take part in sonar operation were obtained. Reference 11, figures 1.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
Grinchenko V.T., Ulitko A.F., Shulga N.A. (1989), “Mechanics related fields in structural elements. Vol.5. Electroelasticity”. Kiev, Scientific idea. P. 280. (Rus)
Derepa A.V., Lejko O.G., Melenko Y.I. (2014), “The basement of military-technical investigations. Theory and applications. Vol. 7. Composite system “hydroacoustic weapon – surface ship”. The problem of “hydroacoustic system – surface ship” system with antennas, which placed in the body of the
ship”. Kiev, "Dmitriy Burago Publishing house". P.424 (Rus)
Dіdkovskij V. S., Poroshin S. M., Lejko O. G., Lejko A. O., Drozdenko O.І. (2013) “Construction of electroacoustic instruments and systems for multimedia acoustic technology”. Kharkov. P. 390. (Ukr)
Ivanov E.A. (1968), “Diffraction of electromagnetic waves on two bodies“. Minsk, Science and technics. P. 584 (Rus)
Koryakin Y.A., Smirnov S.A., Yakovlev G.V. (2004) “Hydroacoustic ship-based technics: state and actual problems”. SPb, Science. P. 410. (Rus)
Lejko O.G., Shamarin Y.E., Tkachenko V.P. (2000) “Underwater electroacoustic equipment and devices. Vol. 1. Underwater sonars. Sound fields computing methods”. Kiev, P. 320. (Rus)
Leiko A.G., Nyzhnyk A.I, Starovoyt Y.I. (2013), “Sound fields of piezoceramic emitters with different piezoelectric effect”. Electronics and Communication. №5. pp. 50-55. (Rus)
Leiko A.G., Nyzhnyk A.I, Starovoyt Y.I. (2013), “Acoustic properties of cylindrical piezoceramic emitters with power and compensated design with longitudinal and transverse piezoelectric effect”. Electronics and Communication. №6. pp. 62-73. (Rus)
Leiko A.G., Bogdanova N.V., Nyzhnyk A.I., Starovoyt Y.I (2014) “Electrical properties of cylindrical piezoceramic emitters with power and compensated design with circumferential polarization”. Electronics and Communication. №3. pp. 62-72. (Rus)
Savin V.G., Didusenko Y.A. (2011), “The equations of motion of thin-walled cylindrical piezoelectric transducers with a circumferential polarization”. Consonance-2011, Acoustic Symposium. pp. 230-235. (Rus)
Smarishev M.D. (1973) “Directionality of sonars”. Sudostoenie, P. 277.