Simulation of the formation processes of digital x-ray image
Main Article Content
Abstract
The mathematical model of converting X-ray images in "scintillator – CCD” X-ray television systems was developed. This model allows to calculate the characteristics of X-ray in the output of the X-ray tube and behind the object of research, the glow intensity of X-ray screen, the intensity of light on the surface of the CCD-sensor after passing optics, charge in any pixel of CCD and the output signal from it, the signal-to-noise ratio in the output signal and quantum efficiency of X-ray detector.
Reference 10, figures 1, table 1.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
Usachev, E. Yu., Valykov, V. V., Tochynskyy, E. H. (2014). The digital radiography complex for the revision of welded joints of operating pipelines. Kontrol. Dyahnostyka, № 6, pp. 60–64. (Rus).
Troytskyy, V. A., Mykhaylov, S. R., Pastovenskyy, R. O., Shylo, D. S. (2015). Modern radiography systems for non-destructive testing. Tekhnicheskaya Diagnostika i Nerazrushayushchiy Kontrol, № 1, pp. 23–35. (Rus)
Vasylev, V. N., Lebedev, L. A., Sydoryn, V. P., Stavytskyy, R. V. (1990). The emission spectra of X-ray machines: handbook. M. Energoatomizdat, P. 144. (Rus)
Mykhaylov, S. R. (2002). Simulation of shadow X-ray image of the object in controlled fluoroscopic systems for non-destructive testing. Electronics and Communications, № 16, pp. 59–70. (Rus).
Shpahyn, A. P., Rubynovych, Y. M. (1982). Energy buildup factors for X-ray. Zavodskaia laboratoryia, № 7, pp. 49–51. (Rus).
Liapydevskyi, V. K. (1987). Methods for detecting radiation. M. Energoatomizdat, P. 408. (Rus)
Abramov, A. Y., Kazanskyi, Iu. A., Matusevych, E. S. (1985). Basics of experimental methods of nuclear physics. M. Energoatomizdat, P. 488. (Rus)
Pustunskyi, Y. N. (2009). Utochnenie zavisimosti osveshhjonnosti opticheskogo izobrazhenija ot osveshhjonnosti obiekta v televizionnyh datchikah. Doklady TUSUR, № 1 (19), part 1, pp. 36–39. (Rus).
Craig Stark. (2009). Signal to Noise: Understanding it, measuring it, and improving it: Part 1.
Link: http://www.stark-labs.com/craig/resources/Articles-&-Reviews/SNR-Part-1.pdf
Kopeliovich, M. H. Novickij, F. N. Jakobson, A. M. (1973). Parametry rentgenovskogo izobrazhenija pri ispolzovanii apparatov RUP-150/300-10. Zavodskaia laboratoryia, № 6, pp. 710–712. (Rus).