Investigation of exciton emission as elements for quantum computing

Main Article Content

Марат Оначенко
В. І. Осінський

Abstract

Article is devoted to a comparative study of the exciton emission and indirect-direct-gap materials. Based on the analysis of hydrogen-exciton models and results of studies of excitons and indirect-direct-gap materials was found optimal approach for practical implementation of effective elements for quantum computing. When using wideband direct-gap materials A3B5 and A2B6 new opportunities excitons and quantum dots as elements of a quantum computer with high conservation of the coherence of electron states at room temperature.

Bible. 17, Fig. 6.

Article Details

How to Cite
Оначенко, М., & Осінський, В. І. (2015). Investigation of exciton emission as elements for quantum computing. Electronics and Communications, 20(3), 12. https://doi.org/10.20535/2312-1807.2015.20.3.53589
Section
Solid-state electronics

References

Osinsky, V.I., Masol, I.V., Onachenko, M.S., Sushiy, A.A (2013). Decoherence III-N low-dimensional nanostructures quantum processors. IX Vserossiyskaya konferencia «Gallium, Indium, Aluminium Ni-trides and structures and devices» Мoscow., Рp. 100−101. (Rus.)

Muth, J., Osinsky, A. (2007). Properties of ZnO Alloys”. In the book “Wide Bandgap Light Emitting Ma-terials and Devices. Edited by G.Neumark, I.Kuskovsky, H.Jiang, Wiley-VCH, Рp. 179-204.

Shalimova, K.V. (1985). Physics of semiconductors. M.: Energoatomizdat, P. 392. (Rus.)

Gribkovsky, V.P. (1975). The theory of absorption and emission of light in semiconductors. Minsk: Nauka i technika. (Rus.)

Vavilov, V.S., Nolle, E.L. (1968). Recombination radiation of pure silicon at high excitation levels. FTP, Issue 5, Vol.2, Рp. 742-744. (Rus.)

Govorkov, A.V., Kolesnik, L.I. (1978). Microcathodes Fluorescent investigation of the influence of structural defects on the radiative recombination in gallium arsenide. FTP, Issue 3, Vol.12, Рp.448-452. (Rus.)

Rasul, A., Davidson, S. (1976). A detailed study of radiation and non-radiation recombination around dislocations in GaP. In: Gallium arsenide and related compound (Edinburgh), p.306.

Drozdov, N.A., Patrin, A.A., Tkachev, V.D. (1981). Modification of the dislocation luminescence spec-trum by oxygen atmospheres in silicon. Phys. Stat. sol. (a), Vol. 64, No. 1, Pp. 61-65.

Osipyan, Yu.A., Timofeev, V.B., Schteinman, E.A. (1972). Exciton scattering on dislocations in CdSe crystals” GETF, Issue 1, Vol.62, Pp.272-279. (Rus.)

Newman, R. (1957). Recombination radiation from deformed and alloyed germanium p-n-junction at 80 K. Phys. Rev., Vol. 105, No. 6, Pp.1715-1720.

Gippius, A.A., Vavilov, V.S. (1962). Radiative recombination at dislocations in germanium. FTT, Issue 9, Vol.4, pp.2426-2433. (Rus.)

Gippius A.A., Vavilov V.S. (1964), “Radiative recombination at dislocations in germanium”. FTT, Issue 8, Vol.6, Pp. 2361-2368. (Rus.)

Gippius, A.A., Vavilov, V.S., Goncharov, M.S., Murashev, M.S. (1965). Radiative recombination in germanium crystals with a high density of dislocations. FТТ, Issue 2, Vol.7, Pp.645-647. (Rus.)

Haynes, J. (1960). Experimental proof of the existence of a new electronic complex in silicon. Phys. Rev. Lett., Vol .4, No. 7, Pp.361-363.

Haynes, J.R., Lax, М., Flood, W.F. (1961). The role of excitons in recom¬bination radiation from sili-con. In; Proc. Internat. Conf. on Semiconductor Physics, Prague, Academic Press., Inc., New-York, Pp.423-426.

Van Rusbrek, V., Shokley, V. (1957). Radiative recombination of electrons and holes in germanium. Problemy fiziki poluprovodnikov / ed. by V.L.Bonch-Bruevich, Moscow, Pp.122-127. (Rus.)

Brodіn, M. (2001). Discovery and fermentation studies of molecular excitons. Lviv, Lvіvsky Natsіonalny unіversitet. P. 64. (Ukr.)