Effect of the electrical loading on forced vibrations of transversely po-larized piezoceramic bars

Main Article Content

Олександр Ігорович Безверхий
Л. П. Зінчук
В. Л. Карлаш

Abstract

This article analyzes the experimental and computational results obtained in the study of the longitudinal vibrations of thin piezoceramic bars with transverse polarization depending on the electrical load such as the given constant amplitude current or voltage. Calculations of the admittance, coupling coefficients, mechanical and piezoelectric loss tangents were made on the basis of a new simple iterative method. The idea of alternate measuring the voltage drop in the modernized Mason scheme was further developed, and the phase shifts between the components of admittance were determined. The experimental data are in good agreement with the calculated values.

Reference 26, figures 5.

 

Article Details

How to Cite
Безверхий, О. І., Зінчук, Л. П., & Карлаш, В. Л. (2016). Effect of the electrical loading on forced vibrations of transversely po-larized piezoceramic bars. Electronics and Communications, 20(4), 73–76. https://doi.org/10.20535/2312-1807.2015.20.4.69911
Section
Acoustical devices and systems

References

Bolkisev, A. M., Karlash, V. L., Shul'ga, N. A. (1984). Temperature dependence of the properties of piezoelectric ceramics. Soviet Applied Mechanics. Vol. 20, no.7, pp. 650 – 653.

Holland, R. (1967). Representation of dielectric, elastic and piezoelectric losses by complex coeffi-cients. IEEE Trans. Sonics Ultrasonics. SU–14(1), pp. 18 – 20.

(1961). IRE Standards on Piezoelectric Crystals: Measurements of Piezoelectric Ceramics. Proс. IRE. Vol. 49, pp. 1161 – 1169.

Jaffe, B., Cook, W. R., Jaffe, H. (1971). Piezoelectric ceramics. London and New York: Academic Press. P. 317.

Karlash, V. L. (1988). The problem of electromechanical losses in piezoelectric bodies. Soviet Ap-plied Mechanics. Vol. 24, no. 3, pp. 258 – 262.

Karlash, V. (2005). Longitudinal and lateral vibrations of a planar piezoceramic transformer. Jpn. J. Appl. Phys. Vol. 44, no. 4A, pp. 1852 – 1856.

Karlash, V. L. (2005). Resonant electromechanical vibrations of piezoelectric plates. Int. Appl. Mech. Vol. 41, no. 7, pp. 709 – 747.

Karlash, V. L. (2005). Planar electroelastic vibrations of piezoceramic rectangular plate and half-disk. Int. Appl. Mech. Vol. 43, no. 5, pp. 547 – 553.

Karlash, V. L. (2009). Particularities of amplitude-frequency characteristics of admittance of thin pie-zoceramic half-disk. Int. Appl. Mech. Vol. 45, no. 10, pp. 647 – 653.

Karlash, V. L. (2013). Energy losses in piezoceramic resonators and its influence on vibrations’ char-acteristics. Electronics and communication. Vol. 19, no. 2(79), pp. 82 – 94.

Karlash, V. L. (2013). Forced electromechanical vibrations of rectangular piezoceramic bars with sec-tionalized electrodes. Int. Appl. Mech. Vol. 49, no. 3, pp. 360 – 368.

Martin, G.E. (1974). Dielectric, elastic and piezoelectric losses in piezoelectric materials. Ultrasonic Symp. Proc. Milwaukee, pp. 613 – 617.

Mezheritsky, A. V. (2004). Elastic, dielectric and piezoelectric losses in piezoceramics; how it works all together. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. Vol. 51, no. 6. pp. 695 – 797.

Uchino, K., Zheng, J. H., Chen, Y. H. et al. (2006). Loss mechanisms and high power piezoelectrics. J. Mat. Sci. Vol. 41, pp. 217 – 228.

Uchino, K., Zhuang, Yu. and Ural, S. O. (2011). Loss detertmination methodology for a piezoelectric ceramic: new phenomenological theory and experimental proposals. J. Advanced Dielectrics. Vol. 1, no. 1, pp. 17 – 31.

Ural, S. O., Tunodemir, S., Zhuang, Yu. and Uchino, K. (2009). Development of a high power piezoe-lectric characterization system and its application for resonance/antiresonance mode characterization. Jpn. J. Appl. Phys. Vol. 48, no.5R, 056509.

Akopyan, V. A., Soloviev, A. N., Shevtsov, S. N. (2008). Methods and algorithms for determine the full set of compatible material constants of piezoelectric materials. Rostov-na-Donu, Yuzhnyiy feder-alnyiy universitet. P. 144. (Rus)

Bezverkhy, A., Zinchuk, L., Karlash, V. (2013). An influence of electric loading on piezoceramic reso-nators’ vibrations characteristics. Fіziko-mehanіchne modelyuvannya ta іnformatsіynі tehnologії. Vol.18, pp 9 – 20. (Ukr)

Glozman, I.A. (1972). Piezoceramics. Moskva, Energhiya. P. 288. (Rus)

GOST 12370-72 20. Piezoceramic materials, test methods. (1973). Moskva, Izdatelstvo standartov. P. 28. (Rus)

Karlash, V. L. (2012). Methods of determination of coupling factors and energy losses at piezoceram-ics resonator’s vibrations. Acoustic bulletin. Vol. 15, no. 4, pp. 24 – 38. (Ukr)

Katz, H. W. (Ed.) (1964). Magnetic and Piezoelectric Devices. Moskva, Energhiya. P. 416. (Rus)

Shul’ga, N. A., Bolkisev, A. M. (1990). The Vibrations of Piezoelectric Bodies, Kiev, Naukova dumka. P. 228. (Rus)

Shul’ga, M. О., Karlash, V. L. (2008). Resonant electromechanic vibrations of piezoelectric plates. Ky-iv, Naukova dumka. P. 272. (Ukr)

Shulga, M. О., Karlash, V. L. (2008). Measurement of piezoceramic elements admittance in Meson’s four-pole and its variants. Proc. ІУ Int. Sci.-tech. Conf. “Sensors, devices and systems” – 2008”. Cher-kasy – Gurzuf, pp. 54 – 56. (Ukr)

Shulga, M. О., Karlash, V. L. (2013). Amplitude-phase characteristics of radial vibrations of thin pie-zoceramics disk near resonances. Dopovidi NANU. No. 9, pp. 80-86. (Ukr)