Power factor corrector with adaptive digital peak current mode control

Main Article Content

Ю. С. Демченко
В. В. Рогаль

Abstract

Digital control systems are increasingly used in power electronics due to the whole number of advantages of digital control over analog. Power factor corrector with adaptive digital peak current mode control is presented in this article. The principle of peak current mode control is described. The advantages and disadvantages of this mode are listed. The scheme of the corrector with adaptive digital control is depicted. Conducted computer simulation confirmed the validity of the designed corrector.

Reference 14, figures 6.

Article Details

How to Cite
Демченко, Ю. С., & Рогаль, В. В. (2016). Power factor corrector with adaptive digital peak current mode control. Electronics and Communications, 20(5), 29–35. https://doi.org/10.20535/2312-1807.2015.20.5.70056
Section
Power electronics

References

Buso, S., Mattavelli, P., Rossetto, L., Spiazzi, G. (1998). Simple Digital Control Improving Dynam-ic Performance of Power Factor Preregulators. IEEE Transactions on Power Electronics. Vol. 13, pp. 814-823.

Chen, J., Prodic, A., Erickson, R. W., Maksimovic, D. (2003). Predictive digital current pro-grammed control. IEEE Transactions on Power Electronics, Vol. 18, No. 1, pp. 411-419.

De Castro, A., Zumel, P., García, O., Riesgo, T., Uceda, J. (2003). Concurrent and Simple Digital Controller of an AC/DC Converter with Power Factor Correction Based on an FPGA. IEEE Trans-actions on Power Electronics, Vol. 18, No. 1, pp. 334-343.

Fu, M., Chen, Q. (2001). A DSP based controller for power factor correction (PFC) in a rectifier circuit. Proceedings of IEEE APEC Conference, pp. 144–149.

Grote, T., Schafmeister, F., Figge, H., Frohleke, N., Ide, P., Bocker, J. (2009). Adaptive Digital Slope Compensation for Peak Current Mode Control. Energy Conversion Congress and Exposition, pp. 3523 - 3529.

Prodic, A., Maksimovic, D., Erickson, R. W. (2006). Dead-zone digital controllers for improved dy-namic response of low harmonic rectifiers. IEEE Transactions on Power Electronics, Vol. 21, No. 1, pp. 173-181.

Prodic, A., Maksimovic, D., Erickson, R. W. (2003). Self-tuning digitally controlled low-harmonic rectifier having fast dynamic response. IEEE Transactions on Power Electronics, Vol. 18, No. 1, pp. 420-428.

Ridley, R. An Accurate and Practical Small-Signal Model for Current-Mode Control // [Online]. Available: http://encon.fke.utm.my/nikd/Dc_dc_converter/Current/curr.pdf.

Rossetto, L., Spiazzi, G., Tenti, P. (1994). Control Techniques for Power Factor Correction Con-verters. Proceedings of Power Electronics, Motion Control (PEMC), pp. 1310-1318.

Ye Z.Z., Jovanović M.M., Irving B.T. (2005), Digital Implementation of a Unity-Power-Factor Constant-Frequency DCM Boost Converter. Proceedings of IEEE APEC Conference, pp. 818-824.

Yeh, C.-A., Ho, K.-M., Lai, Y.-S., Takahashi, F., Hamaogi, M. (2009). Digital-Controlled Power Factor Corrector with Transition Current Mode Control without Zero Current Detection. The Eighth International Conference on Power Electronics and Drive Systems, pp. 198-203.

Vasilev, A. O., Khudiakov, V. F., Khabuzov, V. A. (2004). Analysis of modern methods and tech-nical means of correction of power-factor at the impulsive power supplies. Power electronics, № 2, pp. 72-77. (Rus.)

Stepenko S. A. (2013), Review and prospects of the development of the research devoted to power factor correction. Bulletin of NTU "KhPI". Series: New solutions in modern technologies, №18, pp. 34–41. (Rus.)

Stzheletski, R., Koroteev, I. E., Zhuikov, V. Ya. (2001), Chaotic processes in power electronic systems. – Kyiv: Avers, р. 197. (Rus.)