Micromechanical non - intrusive thermal resistive sensor of fluid velocity into a rectangular cross-section flow channel

Main Article Content

Borys Ivanovych Lupyna

Abstract

An analytical model of a non-intrusive micro-electro-mechanical (MEMS) thermal sensor into a rectangular cross-section flow channel is presented and investigated. The analytical expressions for temperature distribution are obtained and numerical values are calculated for a MEMS structures included three-element thermally isolated thin film resistors at a SiO2/Si3N4 dielectric membrane. The model includes the heat exchange from the both frontal and opposite membrane sides and is applicable for gas or liquid flow velocity measurements. The sensor and channel structural design features and materials thermal properties are taken into accounts into the model. The DC heating operations are analyzed including the both constant power dissipation and constant heater temperature modes.

References 23, tables 3, figures 3.

Article Details

How to Cite
Lupyna, B. I. (2016). Micromechanical non - intrusive thermal resistive sensor of fluid velocity into a rectangular cross-section flow channel. Electronics and Communications, 21(3), 17–28. https://doi.org/10.20535/2312-1807.2016.21.3.81454
Section
Solid-state electronics

References

van Kuijk, J., Lammerink, T., de Bree, H.E., Elwenspoek, M., Fluitman, J. (1995). Multi-parameter de-tection in fluid flows. Sensors and Actuators. A 47, pp. 369 – 372.

Kozlov, A. G. (2006). Thermal microsensors: classification, main types Nano- and microsystem tech-nics, № 4, р.p. 2 - 13. (Rus)

Kuo, J. T. W., Lawrence, Y. and Meng, E. (2012). Micromachined Thermal Flow Sensors - A Review. Micromachines, 3, pp. 550 - 573.

Silvestri, S. and Schena, E. (2012). Micromachined Flow Sensors in Biomedical Applications. Microm-achines, 3, - pp. 225 - 243.

Borysov, O. V., Lupyna, B. I, Sorokhtina, H. L. (2014). Multifunction thermal resistance transducer of mechanical and thermal physic medium parameters. 5 - th International radioelectronic forum “Applied radioelectronics. Current state and perspectives”. Kharkiv, Ukraine, 14 -

October 2014 г. Vol. III, pp. 96 - 99. (Ukr)

Beigelbeck, R., Cerimovic, S., Talic, A., Kohl, F., Jachimowicz, A. (2015). From basic flow property to MEMS multiparameter sensors. AMA Conference – SENSOR 2015 and IRS2, pp. 216 – 221.

Damean, N., Regtien, P. P. L., Elwenspoek, M. (2003). Heat transfer in a MEMS for microfluidics. Sensors and Actuators, A. No 105, pp. 137 - 149.

Hu, X. J., Jain, A., Goodson K. E. (2008). Investigation of the natural convection boundary condition in microfabricated structures. International Journal of Thermal Sciences. No 47. pp. 820 – 824.

Borysov, O. V., Lupyna, B. I, Sorokhtina, H. L. (2008). Micromechanical thermal resistive gas velocity sensor. 3 - rd International radioelectronic forum “Applied radioelectronics. Current state and perspec-tives”. Kharkiv, Ukraine, 22 - 24 October 2008. (Ukr)

Landau, L. D., Akhiezer, A. I., Lifshitz, E. M. (1965). General Physics. Mechanics & Molecular Physics. M.: Science. – 399 p. (Rus)

Sazhin, O. V., Pervushin Yu. V. (2011). Thermal microsensor of air mass flow. Science instrument en-gineering Vol 21, № 3, pp. 52 – 61. (Rus)

Sazhin, O. (2013). Novel mass air flow meter for automobile industry based on thermal flow microsen-sor. I. Analytical model and microsensor. Flow Measurement and Instrumentation. Vol. 30, pp. 60 – 65.

Tas, N. R., Lammerink, T. S. J., Leussink, P. J., Berenschot, J. W., de Bree, H-E., Elwenspoek, M. (2000). Towards thermal flowsensing with pL/s resolution. Micromachined Devices and Components VI, 18 September 2000, Santa Clara, CA, USA, pp. 106-121.

Lammerink, T. S. J., Tas, N. R., Elwenspoek, M., Fluitman, J. H. J. (1993). Micro-liquid flow sensor. Sensors and Actuators A, Vol. 37-38, pp. 45-50.

Nguyen, N. T., Wereley S. T. (2006). Fundamentals and Applications of Microfluidics. Second Edition. ARTECH HOUSE, INC. – 497 p.

Rasmussen, A., Mavriplis, C., Zaghloul, M.E., Mikulchenko, O., Mayaram K. (2001). Simulation and optimization of a microfluidic flow sensor. Sensors and Actuators A,Vol. 88, pp. 121 - 132.

Sabaté, N., Santander, J., Fonseca, L., Gràcia, I., Cané C. (2004). Multi-range silicon micromachined flow sensor. Sensors and Actuators A. Vol. 110, pp. 282–288.

sensors relative to each other using heater arrays - a novel method for designing multi-range electrocaloric mass-flow sensors. Sensors and Actuators A. Vol 62, pp. 506 – 512.

King, L. V. (1914). On the convection of heat from small cylinders in a stream of fluid: determination of the convection constants of small platinum wires, with application to hot wire anemometry, Louis Ves-sot King, Proc. of the Royal Society (London), Series A, Vol. 90, p. 563 - 570.

Borysov, O. V., Zavorotnyi, V. F., Katsan, I. I., Lupyna, B. I, Osinov, S. N. (2005). Modelling and struc-ture optimization of a micromechanical thermal sensor. 2 - nd International radioelectronic forum “Ap-plied radioelectronics. Current state and perspectives”. Kharkiv, Ukraine, 19 - 23 September 2005. Vol 3, pp. 240 - 243. (Ukr)

Kim, T. H., Kim, D.-K., Kim, S. J. (2009). Study of the sensitivity of a thermal flow sensor. Int. Journal of Heat and Mass Transfer. Vol. 52, pp. 2140 – 2144.

Billat, S., Kliche, K., Gronmaier, R., Nommensen, P., Auber, J., Hedrich, F., Zengerle, R. (2008). Monolithic integration of micro-channel on disposable flow sensors for medical applications. Sensors and Actuators A. Vol. 145 – 146, pp. 66 – 74.

Hedrich, F., Kliche, K., Storz, M., Billat, S., Ashauer, M., Zengerle, R. (2010). Thermal flow sensors for MEMS spirometric devices. Sensors and Actuators A. Vol. 162, pp. 373 – 378.