The linearization of primary energy flow parameters change function Franklin discrete functions

Main Article Content

Kateryna Serhiivna Osipenko
Valerii Yakovich Zhuikov

Abstract

The discrete transformation of Franklin is presented and the transformation on a finite interval with operations over arguments in modulus is suggested in the article. The example of determining the amplitudes of the basis functions is given. It is noted that the linear approximation of the primary energy flow parameter change function with Franklin functions enhances the energy level, which can be selected from a renewable source.

Referense 6, Figures 2.

Article Details

How to Cite
Osipenko, K. S., & Zhuikov, V. Y. (2016). The linearization of primary energy flow parameters change function Franklin discrete functions. Electronics and Communications, 21(4), 33–37. https://doi.org/10.20535/2312-1807.2016.21.4.82100
Section
Power electronics
Author Biography

Kateryna Serhiivna Osipenko, National technical university of Ukraine "Igor Sikorsky Kyiv polytechnic institute"

старший викладач кафедри промислової електроніки факультету електроніки

References

Baziuk T.M., Blinov I.V., Butkevych O.F., Honcharenko I.S., Denysiuk S.P., Zhuikov V.Ia., Kyrylenko O.V., Lukianenko L.M., Mykolaiets D.A., Osypenko K.S., Pavlovskyi V.V., Rybina O.B., Steliuk A.O., Tankevych S.Ie., Trach I.V. Intelligent power systems: elements and modes: Under the general editorship of acad. of the NAS of Ukraine O.V. Kyrylenko / Institute of Electrodynamics of the NAS of Ukraine. – K.: Institute of Electrodynamics of the NAS of Ukraine, 2016. – 400 p. (Ukr)

F. Boico, B. Lehman, "Study of Different Implementation Approaches for a Maximum Power Point Tracker", IEEE COMPEL Workshop, pp. 15 – 21, 2006.

Zhuikov V. Compensator currents form determination considering wind generator aerodynamic re-sistance / V. Zhuikov, K. Osypenko // 2014 IEEE International conference on intelligent energy and power systems (IEPS) Conference Proceedings. 2014. – P. 168-170.

Franklin Ph. A set of continuous orthogonal functions. – Mathematische Annalen, 100, 1928, 522-529.

The archive of the meteorological observations. Data on airfields in Europe [electronic resource] – Access to the resource: http://www.pogoda.by/zip-avia/index.php?Year=2015&sortBy=country

Zhuikov V.J., Tereschenko T.A.. Petergerya J.S. Symmetrical transformation on finite intervals. – K.: Avers, 2000. – 218 p.