MEANS AND METHODS OF THE UPPER LIMBS PROSTHESES CONTROL

Main Article Content

Arsen Vasyliovych Savchuk
Anton Oleksandrovych Popov

Abstract

In this article means and methods of upper limb prostheses control are described. The analysis of merits and demerits of the invasive systems of registration of signals that control artificial limbs is carried out. The new technology of high-resolution electromyography (EMG HR) is described. The complexity of obtaining a signal without movement artifacts  is considered as the main problem of non-invasive EMG HR. The possible ways of applying the EMG HR systems for rehabilitation, optimization of electrodes placement and reducing their quantity during the fitting process of upper limb prosthesis are proposed. The possibility of using dynamic forecasting of prosthesis movements in real time in EMG HR systems and improvement of intuitive control of the upper limb prostheses is highlighted.

Ref. 23, fig. 8.

Article Details

How to Cite
Savchuk, A. V., & Popov, A. O. (2017). MEANS AND METHODS OF THE UPPER LIMBS PROSTHESES CONTROL. Electronics and Communications, 22(2), 33–42. https://doi.org/10.20535/2312-1807.2017.22.2.91292
Section
Biomedical devices and systems
Author Biographies

Arsen Vasyliovych Savchuk, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Аспірант

Anton Oleksandrovych Popov, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Доцент, кафедра фізичної та біомедичної електроніки КПІ ім Ігоря Сікорського

References

M. Khokhol і O. Mikhnevych, «Systema reabilitatsiyi invalidiv z amputatsiynymy defektamy nyzhnikh kintsivok», Kyiv, p 25, 1995.

C. Uhde і N. Berberich, «Artificial / Prosthetic Limbs», Technical University of Munich, 2015.

I. Desarrollo, U. Norte, E. Nathalia, G. Melo, O. Fernando, і A. Sánchez, «Anthropomorphic robotic hands : a review Manos robóticas antropomórficas : una revisión Darío Amaya Hurtado», vol 32, pp 279–313, 2014.

Ortoteh-Service, «Apper limb prostheses», 2016. [online]. URL: http://orthotech.kiev.ua/kontakt/protezyi-verhnyh-konechnostej. Title from the screen.

D. Knudson, Fundamentals of Biomechanic, Second Edi. Chico, CA: Springer Science+Business Media, LLC, 2007, ISBN 978-0-387-49311-4. ISBN 978-0-387-49312-1 (e-book).

D. Murphy, Fundamentals of Amputation Care and Prosthetics. New York, NY: Demos Medical Publishing, LLC, 2014, ISBN 978-1-936287-70-3. ISBN 978-1-61705-119-7 (e-book).

L. Pan, D. Zhang, N. Jiang, X. Sheng, і X. Zhu, «Improving robustness against electrode shift of high density EMG for myoelectric control through common spatial patterns», J. Neuroeng. Rehabil., vol 12, no 1, p 110, 2015, DOI: 10.1186/s12984-015-0102-9.

S. Sudarsan і E. C. Sekaran, «Design and Development of EMG Controlled Prosthetics Limb», Procedia Eng., vol 38, pp 3547–3551, 2012, DOI: 10.1016/j.proeng.2012.06.409.

J. S. Lee, J. Heo, W. K. Lee, Y. G. Lim, Y. H. Kim, і K. S. Park, «Flexible capacitive electrodes for minimizing motion artifacts in ambulatory electrocardiograms», Sensors (Switzerland), vol 14, no 8, pp 14732–14743, 2014, DOI: 10.3390/s140814732.

H. Fuketa, K. Yoshioka, Y. Shinozuka, і K. Ishida, «Measurement Sheet With 2 V Organic Transistors for Prosthetic Hand Control», IEEE Trans. Biomed. Eng., vol 8, no 6, pp 824–833, 2014, DOI: 10.1109/TBCAS.2014.2314135.

N. S. Dias, A. F. Silva, P. M. Mendes, і J. H. Correia, «Non-invasive iridium oxide biopotential electrodes», IECON Proc. (Industrial Electron. Conf., pp 1899–1904, 2009,

DOI: 10.1109/IECON.2009.5414851.

E. Kuronen, «Epic Sensors in Electrocardiogram Measurement», Oulu University of Applied Sciences, 2012.

Y. M. Chi, «Non-contact biopotential sensing», US San Diego, 2011.

S. Casaccia, L. Scalise, L. Casacanditella, E. P. Tomasini, і J. W. Rohrbaugh, «Non-contact assessment of muscle contraction: Laser Doppler Myography», 2015 IEEE Int. Symp. Med. Meas. Appl. MeMeA 2015 - Proc., pp 610–615, 2015, DOI: 10.1109/MeMeA.2015.7145276.

L. R. Hochberg et al., «Reach and grasp by people with tetraplegia using a neurally controlled robotic arm», Nature, vol 485, no 7398, pp 372–375, Трав 2012, DOI: 10.1038/nature11076.

T. A. Kuiken et al., «Targeted Muscle Reinnervation for Real-Time Myoelectric Control of Multifunction Artificial Arms», Jama, vol 301, no 6, pp 619–628, 2011 DOI: 10.1001/jama.2009.116.

M. Ison, I. Vujaklija, B. Whitsell, D. Farina, і P. Artemiadis, «High-Density Electromyography and Motor Skill Learning for Robust Long-Term Control of a 7-DoF Robot Arm», IEEE Trans. Neural Syst. Rehabil. Eng., vol 24, no 4, pp 424–433, 2016, DOI: 10.1109/TNSRE.2015.2417775.

E. Akdogan і Z. Shishman, «A muscular activation controlled rehabilitation robot system», Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol 6881 LNAI, no PART 1, pp 271–279, 2011 DOI: 10.1007/978-3-642-23851-2_28.

M. Novak, «Design of an Arm Exoskeleton Controlled by the EMG Signal», no December, 2011.

P. K. Artemiadis, «EMG-Based Control of a Robot Arm Using Low- Dimensional Embeddings», Robot. IEEE Trans., pp 393–398, 2010, DOI: 10.1109/TRO.2009.2039378.

Z. O. Khokhar, Z. G. Xiao, і C. Menon, «Surface EMG pattern recognition for real-time control of a wrist exoskeleton», Biomed. Eng. Online, vol 9, no 1, p 41, 2010, DOI: 10.1186/1475-925X-9-41.

P. Shenoy, K. J. Miller, B. Crawford, і R. P. N. Rao, «Online electromyographic control of a robotic prosthesis», IEEE Trans. Biomed. Eng., vol 55, no 3, pp 1128–1135, 2008, DOI: 10.1109/TBME.2007.909536.

Y.-H. Liu, H.-P. Huang, і C.-H. Weng, «Recognition of Electromyographic Signals Using Cascaded Kernel Learning Machine», IEEE/ASME Trans. Mechatronics, vol 12, no 3, pp 253–264, 2007, DOI: 10.1109/TMECH.2007.897253.