Апроксимативные методы нахождения плотности вероятностей
##plugins.themes.bootstrap3.article.main##
Аннотация
Систематизированы методы теоретического и экспериментального нахождения плотности вероятностей, базирующиеся на ее представлении линейной комбинацией базисных функций.
##plugins.themes.bootstrap3.article.details##
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Авторы, публикующиеся в данном журнале, соглашаются со следующими условиями:- Авторы сохраняют за собой права на авторство своей работы и предоставляют журналу право первой публикации этой работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим лицам свободно распространять опубликованную работу с обязательной ссылокой на авторов оригинальной работы и оригинальную публикацию в этом журнале.
- Авторы сохраняют право заключать отдельные договора на неэксклюзивное распространение работы в том виде, в котором она была опубликована этим журналом (например, размещать работу в электронном архиве учреждения или публиковать в составе монографии), с условием сохраниения ссылки на оригинальную публикацию в этом журнале.
- Политика журнала разрешает и поощряет размещение авторами в сети Интернет (например в институтском хранилище или на персональном сайте) рукописи работы как до ее подачи в редакцию, так и во время ее редакционной обработки, так как это способствует продуктивной научной дискуссии и положительно сказывается на оперативности и динамике цитирования статьи (см. The Effect of Open Access).
Библиографические ссылки
O. Shelukhin and I. Belyakov, Non-Gaussian processes, St. Petersburg: Polytechnic, 1992, p. 312.
G. Van Trees and V. T. Goryainov, Theory of detection, estimation and modulation. T. 3. Signal processing in radio and sonar and reception of random Gaussian signals against a background of interference: Per. from English, Moscow: Sov. radio, 1977, p. 664.
T. Gorovetskaya, A. Krasilnikov, and H. Chan, “Models and laws of distribution of fluctuation signals”, Electronics andconnection, no. 9, pp. 5–14, 2000.
B. Levin, Theoretical foundations of statisticschesky radio engineering, vol. 1. Moscow: Sov.radio, 1969, p. 752.
L. Zachepitskaya, “On the possible denormalization of random processes by some inertial linear systems”, Radio engineering and electronics, vol. 13, no. 8, pp. 1452–1455, 1968.
A. Malakhov, Cumulant analysis of random non-Gaussian processes and their transformations, Moscow: Sov. radio, 1978, p. 376.
A. Mitropolsky, Technique of statistical calculations, Moscow: State. publishing house of physics and mathematics.liters, 1961, p. 480.
G. Khan and S. Shapiro, Statistical models inengineering problems: Per. from English, Mir, 1969, p. 396.
B. Levin and V. Schwartz, Probabilistic models and methods in communication and control systems, Moscow: Radio and Communications, 1985, p. 312.
A. Romanenko and G. Sergeev, Approximation methods for analyzing random processes, Moscow: Energy, 1974, p. 176.
S. Prokhorova, Applied analysis of random processes, Samara: SNTsRAS, 2007, p. 582.
R. Guter, L. Kudryavtsev, and B. Levitan, Functions of a real variable.Approximation of functions. Almost periodic functions, Moscow: Fizmatgiz, 1963, p. 244.
A. Kolmogorov and S. Fomin, Elementstheory of functions and functional analysis, Moscow: Science, 1976, p. 544.
A. Trakhtman, Introduction to generalizedspectral theory of signals, Moscow: Sov.radio, 1972, p. 352.
L. Zalmanzon, Fourier Transform,Walsh, Haar and their application in management, communications and other areas, Moscow: Science, 1989, p. 496.
E. Baghdadi, Lectures on communication theory, Moscow: Mir, 1964, p. 402.
B. Marchenko and L. Shcherbak, Linear random processes and their applications, Kyiv: Naukova Duma, 1975, p. 144.
V. Kulya, Orthogonal filters, Kyiv: Technology, 1967, p. 240.
A. Deitch, Methods for identifying dynamic objects, Moscow: Energy, 1979, p. 240.
J. Lanning and R. Battin, Random processessys in automatic control problems:Per. from English, Moscow: IL, 1958, p. 388.
E. Kulikov, Methods for measuring randomprocesses, Moscow: Radio and Communications, 1986, p. 272.
A. Shalygin and Y. Palagin, Appliedstatistical modeling methods, Leningrad: Mechanical Engineering, 1986, p. 320.
A. Denisenko, Signals. Theoretical radio engineering. Reference manual, Moscow: Hotline – Telecom, 2005, p. 704.
I. Kovalenko and A. Filippova, Theory of Probability and Mathematical Statistics, Moscow: Higher school, 1982, p. 256.
S. Chabdarov, N. Safiullin, and A. Feoktistov, Fundamentals of statistical theory of radio communications.Polygaussian models and methods: Textbook.allowance, Kazan: Kazan Aviation. Institutethem. Tupolev, 1983, p. 87.
V. Korolev, Mixed Gaussian probabilistic models of real processes, Moscow: Max Press, 2004, p. 124.
L. Devroy and L. Gyorfi, Nonparametric density estimation, Moscow: Mir, 1988, p. 408.
P. Suetin, Classic orthogonal polynomials, Moscow: Fizmatlit, 2005, p. 480.
V. Beregun and O. Krasilnikov, “Orthogonalgiving the strength and intensity of fluctuation processes. Stan problem”, Electronicsand communication, vol. 39, no. 4, pp. 39–45, 2007.
B. Marchenko and L. Shcherbak, “Problem of moments and cumulant analysis”, Selection and processinginformation, vol. 85, no. 9, pp. 12–20, 1993.