Сучасний стан розвитку теорії електронних приладів О-типу з несиметричними хвилями
Основний зміст сторінки статті
Анотація
Проаналізовано стан розвитку теорії електронних приладів О-типу з несиметричними хвилями, досягнуте за останні дванадцять років, включаючи особливості самозбудження зворотної хвилі спіральних ЛБВ з магнітним фокусуванням, теорії електронно-хвильового посилення в клістроні, теорії автофазних приладів Отіпа з азимутально-несиметричною хвилею
Блок інформації про статтю
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).
Посилання
E. Belyavskyi, “Modern principles of constructionof ultra-high frequency electronic devices”, Scientific news of NTUU "KPI", no. 1, pp. 10–16, 1998.
A. Kats, V. Kudryashov, and D. Trubetskov, Signal in traveling wave lamps. Part 1O-type traveling wave lamp, Saratov: Publishing house of the Saratov state. University., 1984, p. 143.
G. Rapoport and A. Nazarchuk, “About influencephase velocity gradient on the conditionsself-excitation of BWO”, Radio engineering andelectronics, no. 4, pp. 649–658, 1960.
R. Silin and V. Sazonov, Decelerating systems, Moscow: Sov. radio., 1966, p. 632.
E. Belyavskiy, I. Goncharov, A. Martynyuk, V. Svirid, and S. Khotiantsev, “Two-dimensional small signal analysis of backward-wave oscillation in a helix traveling-wave tube under Brillouin-flow, periodic permanent magnetic focusing”, IEEE Transactions on Electron Devices, vol. 48, no. 8, pp. 1727–1736, Aug. 2001. DOI:10.1109/16.936695
E. Belyavskiy, I. Shevelenok, and S. Khotiaintsev, “Linear Two-Dimensional Analysis of Parasitic Backward-Wave Oscillation in a Monofilar-Helix Traveling Wave Tube”, IEEE Transactions on Electron Devices, vol. 52, no. 4, pp. 603–610, Apr. 2005. DOI:10.1109/TED.2005.845079
S. Ghosh, P. Jain, and B. Basu, “Analytical exploration of new tapered-geometry dielectric-supported helix slow-wave structures for broadband TWTs - Summary”, Journal of Electromagnetic Waves and Applications, vol. 10, no. 9, pp. 1217–1222, Jan. 1996. DOI:10.1163/156939396X00676
S. Kapoor, R. Raju, R. Gupta, S. Joshi, and B. Basu, “Analysis of an inhomogeneously loaded helical slow-wave structure for broad-band TWTs”, IEEE Transactions on Electron Devices, vol. 36, no. 9, pp. 2000–2004, Sep. 1989. DOI:10.1109/16.34283
G. Rapoport and Y. Strokovsky, “Generalizedmultilayer depression factorsbeam models in a helical-conductingcylinder”, Electronic technology, no. 4, pp. 105–109,1975.
Y. Altshuler and A. Tatarenko, Lampslow power with reverse wave, Moscow: Owls. radio, 1963, p. 296.
E. Belyavskiy, V. Chasnyk, and S. Khotiaintsev, “Nonlinear Analyses of the Parasitic Backward-Wave Oscillation Power in the Magnetically Focused Pulsed Helix Traveling-Wave Tube Amplifier in the Absence of the Amplified Signal”, IEEE Transactions on Electron Devices, vol. 53, no. 11, pp. 2830–2836, Nov. 2006. DOI:10.1109/TED.2006.883811
E. Belyavsky, M. Dabizha, and A. Konchits, “Approximate nonlinear theory of electricitythrone-wave klystron”, Electronicsand connection, vol. 26, pp. 9–12, 2005.
N. Chertopleksov, “Superconductingtechnologists: current state andprospects for practical application”, Vestnickname of the Russian Academy of Sciences, vol. 71, no. 4, pp. 303–319, 2001.
A. Mohammed, “Analyticalamplifier theory with electronic capturebunches by the field of inhomogeneous azimuthasymmetric wave”, Electronics andconnection, vol. 1, no. 6, pp. 83–85, 1999.
A. Mohammed, “Method for the analytical calculation of an autophase TWT with an inhomogeneousmagnetic field”, Electronics and communication, vol. 1, no. 6, pp. 86–88, 1999.
T. Volkhova, “Interaction optimizationelectromagnetic wave and electron flowka in ALBV taking into account the space charge field”, Electronics and communication, vol. 19, pp. 25–28, 2003.
E. Belyavsky and T. Volkhova, “Optimizationconversion of energy into ALBH with azimuthnon-symmetrical field”, Naukovі visti NTUU"KPI", no. 6, pp. 11–15, Jan. 2004.
Y. Balachuk, E. Belyavsky, and T. Gryaznova, “The theory of autophase O-type devices with azi-Mutally asymmetric wave and painshim focusing field”, Electronics andconnection, no. 26, pp. 9–12, Jan. 2005.
E. Belyavsky and S. Pilipovich, “TelichkinaO.V. Grouping improvement in ALBV-N withlarge focusing field”, Electronickname and connection, vol. 40, no. 5, pp. 30–32, 2007.
E. Belyavsky and O. Telichkina, “AutophaseLBV-N with profiled solenoidalfocusing field and optimalgrouper”, Electronics and communication, no. 3-4, pp. 116–118, Jan. 2008.
E. Belyavsky, “Nonlinear theory of non-laminatesnar two-dimensional disk model of a beam infocusing magnetic field at fullshielding the cathode from this field”, Technique andmicrowave devices, no. 2, pp. 14–19, 2009.