Можливості класифікатора зображень на основі ART1-мережі
Основний зміст сторінки статті
Анотація
Щоб створити систему розпізнавання медичних зображень, необхідно враховувати діапазон можливих перетворень вхідного сиг-налу, що надходить від об’єкта спостереження. У зв’язку з цим основною вимогою для розпізнавання образів є створення такого класифікатора, який був би інваріантним щодо різних трансформацій. Задачу класифікації зображень розв’язували експериментально в середовищі системи MATLAB. Встановили, що 1) під час класифікації зображень за наявності не більше 40 % шуму АРТ1-мережа обирає зафіксований в асоціативній пам’яті вектор-прототип, який найбільше корелює з ним; 2) асоціативна пам’ять на основі АРТ1-мережі за ефективністю еквівалентна асоціативній пам’яті у вигляді бінарного одношарового лінійного асоціатора на основі псевдооберненого правила; вона не здатна виконувати функції інваріантного класифікатора.
Бібл.6, рис. 5, табл. 6.
Блок інформації про статтю
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).
Посилання
Albert, A. (1972). Regression and the Moore-Penrose Pseudoinverse, New York: Academic Press. – 180 p.
Carpenter, G. A. and Grossberg, S. (1987). A massively parallel architecture for a self-organizing neu-ral pattern recognition machine. Computer Vision, Graphics, and Image Processing, vol. 37, pp. 54 – 115
Martin Hagan, Howard Demuth, B. Mark. Beale (2002). Neural Network Design. USA: Colorado Uni-versity Bookstore, Р. 734.
Dobrovskaya, L. M., Dobrovskaya, I. A. (2015). Theory and practice of neural networks, Ukrainian: NTU "KPI" Publisher Polytechnic, Р. 396. (Ukr.)
Haykin, S. (2006). Neural networks: a complete course. 2nd ed. Moscow, Williams Publ., Р. 1104. (Rus.).
Fadeev, D. K., Faddeev, V. N. (2002). Computational methods of linear algebra. 3rd ed., Sr. - St. Pe-tersburg: Lan, Р. 736. (Rus.).